ISB News

Dr. Jeff Ranish and Dr. Mark Gillespie

Mysteries of Cell Fate Unlocked with New Measurement and Modeling Techniques 

In the cellular process of differentiation, information about the concentrations of an important class of proteins residing in a cell’s nucleus has been lacking, a missing link needed for scientists to fully understand how the process works. ISB researchers have quantified this important class of proteins that play a key role in the formation of red blood cells.

Baliga Lab: A Global Map To Fight Tuberculosis

3 Bullets: The disease progression of tuberculosis is extremely complex and it’s poorly understood. ISB and Seattle BioMed researchers have made an important step by developing a comprehensive map of gene regulation in tuberculosis. A resulting open-access web portal offers any scientist the ability to mine the collected data. By ISBUSA Tuberculosis (TB) remains a top global health threat due to its remarkable complexity in disease progression. To help understand…

Tuberculosis Research: A ‘Molecular Road Map’ to Help Understand Gene Regulation

The journal “Trends in Microbiology” recently published a spotlight article on a tuberculosis research collaboration between scientists at Institute for Systems Biology and Seattle BioMed. The paper “The DNA-binding network of Mycobacterium tuberculosis” was published in the journal “Nature Communications” (Jan. 12, 2015): “MTB employs about 200 different molecular switches to sense and respond to the shifting, hostile landscape of the host. To identify and understand the intertwining gene regulatory…

How One Family of Microbial Genes Rewires Itself for New Niches

3 Bullets: When an organism duplicates its genes, it increases its ability to adapt and colonize new environments. ISB researchers used the systems approach to study how one family of microbial genes evolved to bring functions that were adaptive to specific environments. This new understanding of how gene regulatory networks rewire themselves has many potential applications, including how to wire new functions into an organism for biofuel production, bio-remediation or…

New Tool Uses 3-D Protein-DNA Structures to Predict Locations of Genetic ‘On-Off’ Switches

3 Bullets: Novel systems approach uses high-resolution structures of protein-DNA complexes to predict where transcription factors (genetic switches) bind and regulate the genome. This approach can help researchers better understand and predict binding sites for non-model organisms or ‘exotic’ species. Having such insight and predictive capabilities is critical for reverse- and forward-engineering organisms that could be pivotal for new green biotechnologies. By Jake Valenzuela and Justin Ashworth Researchers at the…