ISB News

Tuberculosis Research: A ‘Molecular Road Map’ to Help Understand Gene Regulation

The journal “Trends in Microbiology” recently published a spotlight article on a tuberculosis research collaboration between scientists at Institute for Systems Biology and Seattle BioMed. The paper “The DNA-binding network of Mycobacterium tuberculosis” was published in the journal “Nature Communications” (Jan. 12, 2015):

“MTB employs about 200 different molecular switches to sense and respond to the shifting, hostile landscape of the host. To identify and understand the intertwining gene regulatory network that the molecular switches control, Seattle BioMed and ISB researchers (from the Baliga and Price Labs) examined the consequences of overexpressing (or boosting the function of) each switch. The team overexpressed almost every regulatory gene in MTB, measured the consequences of each perturbation, and used the results to identify genome-wide regulatory interactions for MTB. These results were assembled into an easily searchable map and will stimulate additional systems-level and hypothesis-driven efforts to understand MTB adaptations that promote disease.” Read more…

The spotlight article in “Trends in Microbiology” describes the “remarkable” comprehensiveness of the genome-wide characterization of transcription factor binding sites and highlighted ISB’s Baliga Lab:

Baliga and coworkers have reconstructed a comprehensive gene regulatory network consisting of 3,922 genes, covering 98 percent of the genome by using more than 2,000 transcriptome datasets in different conditions and integrating protein–protein influences as well as operon associations derived from different computational methods.” Read more…

 

Recent Articles

  • New Research Unveils Effective STEM Program Models for High School Students from Historically Marginalized Communities

    An ISB-led study has unveiled important insights and actionable protocols into providing equitable STEM experiences for high school students from historically marginalized communities. The research highlights the transformative power of informal STEM learning in addressing societal challenges and the ease with which many organizations could provide these important opportunities.

  • Common Immune Response Protective Across Many Diseases

    Combined, infection, autoimmunity and cancer account for 40 percent of deaths worldwide and represent major global health challenges. In a Cell Reports paper, ISB researchers detail how the human immune system works in common ways across diseases. Their findings offer promising avenues for exploring multi-disease therapeutic strategies.

  • Spotlight on ISB Education graphic

    2023-24 School Year ISB Education Highlights

    Each month throughout the 2023-2024 academic year, we will highlight some of the top projects the ISB Education team is working on.