ISB News

Malaria Researchers’ Findings May Have Implications for Preventing Spread of Deadly Disease

ISB researchers and their collaborators are using systems biology approaches to learn how the malaria parasite is able to transfer to humans via the bite of an infected mosquito. The information they have uncovered may help identify new ways to prevent people from contracting the deadly disease.

Malaria is caused by Plasmodium parasites that are transmitted to humans through the bite of infected mosquitoes. Once inside the human host, the parasites invade the liver, multiply, and emerge to infect the blood, at which point they cause the clinical symptoms of malaria. 

Mosquitoes that feed on infected blood are themselves infected and can spread the disease to others. In 2017, there were an estimated 219 million cases of malaria that resulted in 435,000 deaths, according to the WHO World Malaria Report. More than 60 percent of these deaths were children under five years of age. 

Kristian Swearingen, PhD

Kristian Swearingen, PhD, is a co-first author of a paper published in the journal Nature Communications that details how the malaria parasite is able to transfer to humans via the bite of an infected mosquito. The information they have uncovered may help identify new ways to prevent people from contracting the deadly disease.

“One of the reasons malaria remains such a formidable disease is the lack of an effective vaccine,” said ISB’s Dr. Kristian Swearingen, who studies the Plasmodium parasites.

The form of the malaria parasite that is transferred to humans – sporozoites – develop in cysts in the midgut of the mosquito and then travel to the insect’s salivary glands. There, the parasites lay in wait until the mosquito bites a human and injects parasite-laden saliva into the victim’s skin. 

‘Promising targets’ for antimalarials

Swearingen, a senior research scientist in ISB’s Moritz Lab, used mass spectrometry to identify and compare the proteins present in sporozoites found in either mosquito midguts or salivary glands. Swearingen’s long-time collaborator, Professor Scott Lindner, and his team at Penn State quantified the messenger RNA (mRNA) in the same types of parasites.

The researchers found that, although parasites from midguts and salivary glands look identical under a microscope, there are certain genes that are only expressed in one stage or the other. For example, some of the proteins that are encoded by these genes are only used for infecting mosquito salivary glands, and are then switched off in favor of other genes that encode proteins the parasite will use for infecting humans. 

“The proteins that are only made once the parasite is ready to infect a human represent promising targets for new antimalarial interventions, such as vaccines that train the immune system to recognize invading sporozoites,” Swearingen said.

One of the striking findings of the study arose from comparing the results of the two different technologies – transcriptomics (measuring which genes have been read into mRNA) and proteomics (measuring which proteins were actually translated from the mRNA). The research team found that, for certain genes, the ready-to-invade parasite makes an abundance of mRNA, but stores it away rather than letting it be translated into protein. Only when the parasite has invaded a human will it make the protein, which it then uses to infect the liver. 

The proteins under this translational repression program also represent promising targets for antimalarials.

Swearingen and Lindner are co-first authors of a paper detailing these findings in the journal Nature Communications.

Recent Articles

  • Reich, Heath on Vaccines

    Dr. Jennifer Reich Talks Vaccines and COVID In ISB-Town Hall Seattle Livestream

    Sociologist Dr. Jennifer Reich, author of “Calling the Shots,” was the featured speaker of a virtual event hosted by ISB and Town Hall Seattle. She discussed the complex and increasingly political world of vaccines, how vaccines are viewed as a personal consumption product vs. a public health solution, COVID-19 vaccine development, and more.

  • Keystone Taxa Indispensable for Microbiome Recovery

    How can we harness successional ecology to quickly repair antibiotic-damaged gut microbiota? ISB Assistant Professor Dr. Sean Gibbons wrote this commentary for the journal Nature Microbiology detailing recent research that answers that question. Click the link to read the story (link will open as a new window). Illustration by Allison Kudla, PhD / ISB. 

  • Illustration depicting an individual's genetic risk for disease being "reflected."

    ISB Researchers Show Genetic Risk for Disease Often Reflected in Our Blood

    Diseases develop gradually over years, sometimes decades, before symptoms appear, and are due to malfunctioning physiological processes brought about by our genes and environment. In research published in the journal Proceedings of the National Academy of Sciences (PNAS), ISB researchers have shown how an individual’s genetic risk for disease is often reflected in their blood.