ISB News

New Study: Using Single-Cell Technology to Predict Cell Behavior

In a study published in PLOS BIOLOGY, researchers at Institute for Systems Biology (ISB) explain how they developed a new theory for predicting cell-fate decisions and demonstrate, for the first time, that cells indeed undergo a critical transition – or tipping point – when they commit to a particular lineage.

Jan. 9, 2017

3 Bullets:

  • ISB researchers developed a new theory that uses state-of-the-art single-cell technology to make predictions about how cells will behave in the future.
  • The method can predict when a cell will experience a so-called tipping point before it happens.
  • Being able to predict these critical transitions in cells may have life-saving ramifications in the ability to detect early warning signals for disease.

By Dr. Sui Huang

Stem cells hold enormous potential for cell-based therapy in regenerative medicine, if we can use drugs in the lab to push the patient’s own stem cells to become desired cell types, such as blood, liver, or heart cells. So far, our successes in controlling the generation of specific cell types have been empirical. Researchers have painstakingly mapped out many of the genes involved in the cell-fate-decision processes. But we still have little clue about the fundamental principles that govern how a multipotent stem cell, which has the potential to become more than one type of cell, makes a decision to become a specific cell type. We have not had a formal theory for such cell-fate decisions – until now.

In a study published in PLOS BIOLOGY, researchers at Institute for Systems Biology (ISB) explain how they developed a new theory for predicting cell-fate decisions and demonstrate, for the first time, that cells indeed undergo a critical transition – or tipping point – when they commit to a particular lineage. The team designed a new computational approach that utilizes single-cell resolution gene-expression profiling data to compute an index that indicates an imminent tipping point in cells before it happens. READ MORE….

Recent Articles

  • Reshaping STEM Education Toward a More Equitable Future for Students

    ISB Assistant Professor Dr. Sean Gibbons recently participated in a virtual event titled “Reshaping STEM Education Toward Equitable Futures for Washington Students.” Panelists shared their insights about how to leverage this complex moment to reshape STEM education toward equity, sustainability, and prosperity for Washington state’s students — especially those furthest from opportunity.

  • Shmulevich-Thorsson

    ISB Researchers Among Recipients of AACR Team Science Award

    The American Association for Cancer Research (AACR) has recognized The Cancer Genome Atlas (TCGA) project with the 2020 AACR Team Science Awards. Award recipients include Dr. Ilya Shmulevich, ISB professor and head of the Shmulevich Lab; ISB senior research scientist Dr. Vésteinn Þórsson; and former Shmulevich Lab members Drs. Brady Bernard and Theo Knijnenburg.

  • learning amid pandemic

    ISB Education Prepares Teachers for New Realities of K-12 Learning Amid Pandemic

    The coronavirus pandemic has had a drastic impact on K-12 education. In response, ISB Education has stepped up with a series of virtual workshops to provide much-needed support for student learning. Since March, more than 500 teachers and principals representing every educational district across Washington state have attended our “Systems Are Everywhere” workshops.