Former Undergrad Intern Publishes Algorithm in PLOS Computational Biology


Posted March 1, 2017
In a study published in PLoS Computational Biology, researchers at Institute for Systems Biology (ISB) have developed a multiscale mutation clustering algorithm (M2C) that identifies variable length regions with high mutation density in cancer genes. The M2C algorithm was developed by William Poole (first author on the paper), who started as a summer intern in 2013 as part of ISB’s Center for Systems Biology internship program. Working under the guidance of Dr. Brady Bernard and Dr. Theo Knijnenburg, both senior research scientists in the lab of Ilya Shmulevich at ISB, Poole’s initial summer internship led to a multi-year project that resulted not only in this PLoS Computational Biology publication, but also a Bioinformatics publication about combining dependent P-values. His work was presented at two international scientific conferences: the TCGA Scientific Symposium 2015 and The 15th European Conference on Computational Biology (ECCB 2016). Currently, Poole is pursuing a PhD at the California Institute of Technology (Caltech) in Pasadena, California.
READ FULL SUMMARY OF PAPER
Recent Articles
-
How Old Are You? Your Body Might Disagree With That Answer
Researchers at ISB harnessed deep molecular and physiological information to determine an individual’s biological age, which they found was reflective of overall health compared to chronological age. The findings were published in the Journals of Gerontology: Series A.
-
‘Innovation to Impact:’ 8th Annual Valerie Logan Luncheon Shines Light on ISB Education
The 8th Annual Valerie Logan Luncheon celebrated ISB Education’s mission of engaging entire school systems — from principals and administrators to teachers and students — to ensure all students are STEM literate. Nearly 100 people attended the event at ISB, and generously gave more than $100,000 for ISB Education.
-
Malaria Researchers’ Findings May Have Implications for Preventing Spread of Deadly Disease
ISB researchers and their collaborators are using systems biology approaches to learn how the malaria parasite is able to transfer to humans via the bite of an infected mosquito. The information they have uncovered may help identify new ways to prevent people from contracting the deadly disease.