ISB News

New Study: Using Single-Cell Technology to Predict Cell Behavior

In a study published in PLOS BIOLOGY, researchers at Institute for Systems Biology (ISB) explain how they developed a new theory for predicting cell-fate decisions and demonstrate, for the first time, that cells indeed undergo a critical transition – or tipping point – when they commit to a particular lineage.

Jan. 9, 2017

3 Bullets:

  • ISB researchers developed a new theory that uses state-of-the-art single-cell technology to make predictions about how cells will behave in the future.
  • The method can predict when a cell will experience a so-called tipping point before it happens.
  • Being able to predict these critical transitions in cells may have life-saving ramifications in the ability to detect early warning signals for disease.

By Dr. Sui Huang

Stem cells hold enormous potential for cell-based therapy in regenerative medicine, if we can use drugs in the lab to push the patient’s own stem cells to become desired cell types, such as blood, liver, or heart cells. So far, our successes in controlling the generation of specific cell types have been empirical. Researchers have painstakingly mapped out many of the genes involved in the cell-fate-decision processes. But we still have little clue about the fundamental principles that govern how a multipotent stem cell, which has the potential to become more than one type of cell, makes a decision to become a specific cell type. We have not had a formal theory for such cell-fate decisions – until now.

In a study published in PLOS BIOLOGY, researchers at Institute for Systems Biology (ISB) explain how they developed a new theory for predicting cell-fate decisions and demonstrate, for the first time, that cells indeed undergo a critical transition – or tipping point – when they commit to a particular lineage. The team designed a new computational approach that utilizes single-cell resolution gene-expression profiling data to compute an index that indicates an imminent tipping point in cells before it happens. READ MORE….

Recent Articles

  • Spotlight on ISB Education graphic

    2024-25 School Year ISB Education Highlights

    In the first installment of the 2024-25 academic year roundup, we highlight some of the top projects the ISB Education team is working on. In October, we welcomed new team members, developed a new format for our popular “Systems Are Everywhere!” workshop, and more.

  • 2024 ISB Virtual Microbiome Series

    Our multi-day microbiome-themed virtual course and symposium is back for the fifth year! ISB is hosting a two-day course on October 16 & 17, 2024, followed by a symposium on October 18, 2024 titled, “A gut feeling: Microbes and their impacts on our minds.” Both events are virtual and free.

  • Fluidized bed reactor

    How Microbes Evolve to Spatially Divide and Conquer an Environment 

    ISB researchers examined representative organisms of two classes of microbes whose interaction contributes to the conversion of more than 1 gigaton of carbon into methane every year. They found that gene mutations selected over a relatively short timeframe in the two microbes led to distinct functions.