ISB News

ISB Scientists Have Discovered When and Why a Microbial Community Might Collapse

Researchers in the Baliga Lab at Institute for Systems Biology have developed a framework for assessing the “health” of a microbial community through a stress test that enables them to ask when and why microbial communities collapse under different environmental conditions. The study, published on March 20, 2017, in the journal Molecular Systems Biology, determined that while microbes are equipped to respond to environmental changes, when pushed to the extreme under rapidly fluctuating conditions, the energetic cost of adapting becomes a burden and is unsustainable, leading to collapse. This framework will be invaluable for observing the behavior of microbial communities under simulations of current and projected environmental conditions, allowing scientists to make predictions about the future of our ecosystems and, more importantly, identify ways to protect those ecosystems.

Read the full summary

Recent Articles

  • Timing is Everything: ISB Study Finds Link Between Bowel Movement Frequency and Overall Health

    Everybody poops, but not every day. An ISB-led research team examined the clinical, lifestyle, and multi-omic data of more than 1,400 healthy adults. How often people poop, they found, can have a large influence on one’s physiology and health.

  • Wei Wei, PhD

    Dr. Wei Wei Promoted to Associate Professor

    Wei Wei, PhD – an accomplished cancer researcher with expertise in biotechnology and cancer systems biology – has been promoted to ISB associate professor. The Wei Lab focuses on understanding how cancer cells adapt to therapeutic treatment to foster therapy resistance by coordinating their internal molecular machinery and how these adaptive changes evolve within diverse tumors influenced by the tumor microenvironment. 

  • Drs. Nitin Baliga and James Park

    How Glioblastoma Resists Treatment – and Ways to Prevent It

    Glioblastoma is one of the deadliest and most aggressive forms of primary brain cancer in adults and is known for its ability to resist treatment and to recur. ISB researchers have made breakthrough discoveries in understanding the mechanisms behind acquired resistance, focusing on a rare and stubborn group of cells within tumors called glioma stem-like cells.