ISB News

ISB Scientists Have Discovered When and Why a Microbial Community Might Collapse

Researchers in the Baliga Lab at Institute for Systems Biology have developed a framework for assessing the “health” of a microbial community through a stress test that enables them to ask when and why microbial communities collapse under different environmental conditions. The study, published on March 20, 2017, in the journal Molecular Systems Biology, determined that while microbes are equipped to respond to environmental changes, when pushed to the extreme under rapidly fluctuating conditions, the energetic cost of adapting becomes a burden and is unsustainable, leading to collapse. This framework will be invaluable for observing the behavior of microbial communities under simulations of current and projected environmental conditions, allowing scientists to make predictions about the future of our ecosystems and, more importantly, identify ways to protect those ecosystems.

Read the full summary

Recent Articles

  • Spotlight on ISB Education graphic

    2024-25 School Year ISB Education Highlights

    In the first installment of the 2024-25 academic year roundup, we highlight some of the top projects the ISB Education team is working on. In October, we welcomed new team members, developed a new format for our popular “Systems Are Everywhere!” workshop, and more.

  • 2024 ISB Virtual Microbiome Series

    Our multi-day microbiome-themed virtual course and symposium is back for the fifth year! ISB is hosting a two-day course on October 16 & 17, 2024, followed by a symposium on October 18, 2024 titled, “A gut feeling: Microbes and their impacts on our minds.” Both events are virtual and free.

  • Fluidized bed reactor

    How Microbes Evolve to Spatially Divide and Conquer an Environment 

    ISB researchers examined representative organisms of two classes of microbes whose interaction contributes to the conversion of more than 1 gigaton of carbon into methane every year. They found that gene mutations selected over a relatively short timeframe in the two microbes led to distinct functions.