Back to Faculty

Dr. Wei Wei is an Associate Professor at the Institute for Systems Biology. He also has the position of Affiliate Faculty at the Molecular Engineering & Sciences Institute of the University of Washington. He received his B.S. in Fundamental Sciences (Mathematics and Physics) at Tsinghua University (Beijing) and M.S. in Materials Sciences and Engineering at UC San Diego. He obtained his Ph.D. at California Institute of Technology in 2014 with cross-disciplinary training that included both physical and biological sciences. Before joining ISB, Wei was an Assistant Professor at UCLA until mid-2018.

Wei received the Chinese Government Award for Outstanding Student Abroad in 2013. In 2014, he was the sole recipient of the Milton and Francis Clauser Doctoral Prize – the highest honor for a Caltech Ph.D. He received the Andy Hill Cancer Research Endowment Distinguished Researchers award in 2019. Dr. Wei has been serving as either program director or project lead in various nationwide cancer research consortium-funded projects. Some of these initiatives include the NCI-funded ISB/UCLA Physical Sciences in Oncology Network Program (PS-ON), ISB/UW Innovative Molecular Analysis Technologies (IMAT) program, ISB/UCLA Centers of Cancer Nanotechnology Excellence (CCNE) program, and ISB/Yale/UCLA Cancer Systems Biology Consortium (CSBC) program.

Wei’s research interests reside in a highly cross-disciplinary field of BioMEMS, molecular and cellular analysis, and systems biomedicine. The overarching goal of the Wei Lab is to harness systems biology thinking and approaches to address critical questions and cultivate new understanding in both fundamental and translational cancer research. In cancer biology, the primary focus lies in understanding the phenotypic plasticity of cancer cells and its role in fostering non-genetic (adaptive) drug resistance, a form of resistance distinct from the Darwinian selection of resistant genotypes. The goal is to elucidate how cancer cells coordinate their internal molecular machinery to adapt to therapeutic stress and to understand how these adaptive changes evolve within the heterogeneous tumor and are modulated by the tumor microenvironment (TME). The lab scrutinizes this process across multiple molecular landscapes and at various temporal resolutions, to gain comprehensive insights at both mechanistic and systems levels. This line of inquiry also propels the development of innovative single-cell multi-omics and spatial multi-omics tools. On the translational research front, the lab is committed to advancing liquid biopsy-based predictive cancer diagnostics through the lens of disseminated/circulating tumor cells (DTCs/CTCs), and to revolutionizing functional precision medicine with needle biopsy-based organotypic drug sensitivity assays as companion diagnostics.

2014
Ph.D. in Materials Sciences, California Institute of Technology

2008
M.S. in Materials Sciences and Engineering, UC San Diego

2005
B.S. in Fundamental Sciences (Mathematics and Physics), Tsinghua University

Single-cell/spatial multi-omics, cancer epigenetic plasticity, non-genetic drug resistance, functional precision medicine, cancer molecular diagnostics

2323737 2RQKSFR5 Wei Wei 1 chicago-author-date-16th-edition 50 date desc year 1 7392 https://isbscience.org/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A250%2C%22request_next%22%3A50%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%22SMQ5RBSJ%22%2C%22library%22%3A%7B%22id%22%3A2323737%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Flower%20et%20al.%22%2C%22parsedDate%22%3A%222025%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%201.35%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BFlower%2C%20Cameron%20T.%2C%20Chunmei%20Liu%2C%20Hui-Yu%20Chuang%2C%20Xiaoyang%20Ye%2C%20Hanjun%20Cheng%2C%20James%20R.%20Heath%2C%20Wei%20Wei%2C%20and%20Forest%20M.%20White.%202025.%20%26%23x201C%3BSignaling%20and%20Transcriptional%20Dynamics%20Underlying%20Early%20Adaptation%20to%20Oncogenic%20BRAF%20Inhibition.%26%23x201D%3B%20%26lt%3Bi%26gt%3BCell%20Systems%26lt%3B%5C%2Fi%26gt%3B%2C%20101239.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttp%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.cels.2025.101239%26%23039%3B%26gt%3Bhttp%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.cels.2025.101239%26lt%3B%5C%2Fa%26gt%3B.%20%26lt%3Ba%20title%3D%26%23039%3BCite%20in%20RIS%20Format%26%23039%3B%20class%3D%26%23039%3Bzp-CiteRIS%26%23039%3B%20data-zp-cite%3D%26%23039%3Bapi_user_id%3D2323737%26amp%3Bitem_key%3DSMQ5RBSJ%26%23039%3B%20href%3D%26%23039%3Bjavascript%3Avoid%280%29%3B%26%23039%3B%26gt%3BCite%26lt%3B%5C%2Fa%26gt%3B%20%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Signaling%20and%20transcriptional%20dynamics%20underlying%20early%20adaptation%20to%20oncogenic%20BRAF%20inhibition%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Cameron%20T.%22%2C%22lastName%22%3A%22Flower%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Chunmei%22%2C%22lastName%22%3A%22Liu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hui-Yu%22%2C%22lastName%22%3A%22Chuang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xiaoyang%22%2C%22lastName%22%3A%22Ye%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hanjun%22%2C%22lastName%22%3A%22Cheng%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22James%20R.%22%2C%22lastName%22%3A%22Heath%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wei%22%2C%22lastName%22%3A%22Wei%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Forest%20M.%22%2C%22lastName%22%3A%22White%22%7D%5D%2C%22abstractNote%22%3A%22A%20major%20contributor%20to%20poor%20sensitivity%20to%20anti-cancer%20kinase%20inhibitor%20therapy%20is%20drug-induced%20cellular%20adaptation%2C%20whereby%20remodeling%20of%20signaling%20and%20gene%20regulatory%20networks%20permits%20a%20drug-tolerant%20phenotype.%20Here%2C%20we%20resolve%20the%20scale%20and%20kinetics%20of%20critical%20subcellular%20events%20following%20oncogenic%20kinase%20inhibition%20and%20preceding%20cell%20cycle%20re-entry%2C%20using%20mass%20spectrometry-based%20phosphoproteomics%20and%20RNA%20sequencing%20%28RNA-seq%29%20to%20monitor%20the%20dynamics%20of%20thousands%20of%20growth-%20and%20survival-related%20signals%20over%20the%20first%20minutes%2C%20hours%2C%20and%20days%20of%20oncogenic%20BRAF%20inhibition%20in%20human%20melanoma%20cells.%20We%20observed%20sustained%20inhibition%20of%20the%20BRAF-ERK%20axis%2C%20gradual%20downregulation%20of%20cell%20cycle%20signaling%2C%20and%20three%20distinct%2C%20reversible%20phase%20transitions%20toward%20quiescence.%20Statistical%20inference%20of%20kinetically%20defined%20regulatory%20modules%20revealed%20a%20dominant%20compensatory%20induction%20of%20SRC%20family%20kinase%20%28SFK%29%20signaling%2C%20promoted%20in%20part%20by%20excess%20reactive%20oxygen%20species%2C%20rendering%20cells%20sensitive%20to%20co-treatment%20with%20an%20SFK%20inhibitor%20in%5Cu00a0vitro%20and%20in%5Cu00a0vivo%2C%20underscoring%20the%20translational%20potential%20for%20assessing%20early%20drug-induced%20adaptive%20signaling.%20A%20record%20of%20this%20paper%5Cu2019s%20transparent%20peer%20review%20process%20is%20included%20in%20the%20supplemental%20information.%22%2C%22date%22%3A%222025%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.cels.2025.101239%22%2C%22ISSN%22%3A%222405-4712%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.sciencedirect.com%5C%2Fscience%5C%2Farticle%5C%2Fpii%5C%2FS2405471225000729%22%2C%22collections%22%3A%5B%222RQKSFR5%22%5D%2C%22dateModified%22%3A%222025-03-24T18%3A45%3A40Z%22%7D%7D%2C%7B%22key%22%3A%22DGUNZAY3%22%2C%22library%22%3A%7B%22id%22%3A2323737%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Yang%20et%20al.%22%2C%22parsedDate%22%3A%222024%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%201.35%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BYang%2C%20Liwei%2C%20Juho%20Kim%2C%20Long%20Chen%2C%20Wei%20Wei%2C%20and%20Jun%20Wang.%202024.%20%26%23x201C%3BDetection%20of%20%26gt%3B400%20Cluster%20of%20Differentiation%20Biomarkers%20and%20Pathway%20Proteins%20in%20Single%20Immune%20Cells%20by%20Cyclic%20Multiplex%20In%20Situ%20Tagging%20for%20Single-Cell%20Proteomic%20Studies.%26%23x201D%3B%20%26lt%3Bi%26gt%3BAnalytical%20Chemistry%26lt%3B%5C%2Fi%26gt%3B%2096%20%2843%29%3A%2017387%26%23×2013%3B95.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttp%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facs.analchem.4c04239%26%23039%3B%26gt%3Bhttp%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facs.analchem.4c04239%26lt%3B%5C%2Fa%26gt%3B.%20%26lt%3Ba%20title%3D%26%23039%3BCite%20in%20RIS%20Format%26%23039%3B%20class%3D%26%23039%3Bzp-CiteRIS%26%23039%3B%20data-zp-cite%3D%26%23039%3Bapi_user_id%3D2323737%26amp%3Bitem_key%3DDGUNZAY3%26%23039%3B%20href%3D%26%23039%3Bjavascript%3Avoid%280%29%3B%26%23039%3B%26gt%3BCite%26lt%3B%5C%2Fa%26gt%3B%20%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Detection%20of%20%3E400%20Cluster%20of%20Differentiation%20Biomarkers%20and%20Pathway%20Proteins%20in%20Single%20Immune%20Cells%20by%20Cyclic%20Multiplex%20In%20Situ%20Tagging%20for%20Single-Cell%20Proteomic%20Studies%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Liwei%22%2C%22lastName%22%3A%22Yang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Juho%22%2C%22lastName%22%3A%22Kim%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Long%22%2C%22lastName%22%3A%22Chen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wei%22%2C%22lastName%22%3A%22Wei%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jun%22%2C%22lastName%22%3A%22Wang%22%7D%5D%2C%22abstractNote%22%3A%22The%20identification%20and%20characterization%20of%20immune%20cell%20subpopulations%20are%20critical%20to%20reveal%20cell%20development%20throughout%20life%20and%20immune%20responses%20to%20environmental%20factors.%20Next-generation%20sequencing%20technologies%20have%20dramatically%20advanced%20single-cell%20genomics%20and%20transcriptomics%20for%20immune%20cell%20classification.%20However%2C%20gene%20expression%20is%20often%20not%20correlated%20with%20protein%20expression%2C%20and%20immunotyping%20is%20mostly%20accepted%20in%20protein%20format.%20Current%20single-cell%20proteomic%20technologies%20are%20either%20limited%20in%20multiplex%20capacity%20or%20not%20sensitive%20enough%20to%20detect%20the%20critical%20functional%20proteins.%20Herein%2C%20we%20present%20a%20single-cell%20cyclic%20multiplex%20in%20situ%20tagging%20%28CycMIST%29%20technology%20to%20simultaneously%20measure%20%26gt%3B400%20proteins%2C%20a%20scale%20of%20%26gt%3B10%20times%20than%20similar%20technologies.%20Such%20an%20ultrahigh%20multiplexity%20is%20achieved%20by%20reiterative%20staining%20of%20the%20single%20cells%20coupled%20with%20a%20MIST%20array%20for%20detection.%20This%20technology%20has%20been%20thoroughly%20validated%20through%20comparison%20with%20flow%20cytometry%20and%20fluorescence%20immunostaining%20techniques.%20Both%20peripheral%20blood%20mononuclear%20cells%20%28PBMCs%29%20and%20T%20cells%20are%20analyzed%20by%20the%20CycMIST%20technology%2C%20and%20almost%20the%20entire%20spectrum%20of%20cluster%20of%20differentiation%20%28CD%29%20surface%20markers%20has%20been%20measured.%20The%20landscape%20of%20fluctuation%20of%20CD%20protein%20expression%20in%20single%20cells%20has%20been%20uncovered%20by%20our%20technology.%20Further%20study%20found%20T%20cell%20activation%20signatures%20and%20protein%5Cu2013protein%20networks.%20This%20study%20represents%20the%20highest%20multiplexity%20of%20single%20immune%20cell%20marker%20measurement%20targeting%20functional%20proteins.%20With%20additional%20information%20from%20intracellular%20proteins%20of%20the%20same%20single%20cells%2C%20our%20technology%20can%20potentially%20facilitate%20mechanistic%20studies%20of%20immune%20responses%20under%20various%20disease%20conditions.%22%2C%22date%22%3A%222024%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1021%5C%2Facs.analchem.4c04239%22%2C%22ISSN%22%3A%220003-2700%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facs.analchem.4c04239%22%2C%22collections%22%3A%5B%222RQKSFR5%22%5D%2C%22dateModified%22%3A%222025-04-20T21%3A49%3A37Z%22%7D%7D%2C%7B%22key%22%3A%22RCB4GPF9%22%2C%22library%22%3A%7B%22id%22%3A2323737%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Flower%20et%20al.%22%2C%22parsedDate%22%3A%222024%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%201.35%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BFlower%2C%20Cameron%20T.%2C%20Chunmei%20Liu%2C%20Hui-Yu%20Chuang%2C%20Xiaoyang%20Ye%2C%20Hanjun%20Cheng%2C%20James%20R.%20Heath%2C%20Wei%20Wei%2C%20and%20Forest%20M.%20White.%202024.%20%26%23x201C%3BSignaling%20and%20Transcriptional%20Dynamics%20Underlying%20Early%20Adaptation%20to%20Oncogenic%20BRAF%20Inhibition.%26%23x201D%3B%20%26lt%3Bi%26gt%3BbioRxiv%26lt%3B%5C%2Fi%26gt%3B%2C%202024%26%23×2013%3B02.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-ItemURL%26%23039%3B%20href%3D%26%23039%3Bhttps%3A%5C%2F%5C%2Fwww.biorxiv.org%5C%2Fcontent%5C%2F10.1101%5C%2F2024.02.19.581004.abstract%26%23039%3B%26gt%3Bhttps%3A%5C%2F%5C%2Fwww.biorxiv.org%5C%2Fcontent%5C%2F10.1101%5C%2F2024.02.19.581004.abstract%26lt%3B%5C%2Fa%26gt%3B.%20%26lt%3Ba%20title%3D%26%23039%3BCite%20in%20RIS%20Format%26%23039%3B%20class%3D%26%23039%3Bzp-CiteRIS%26%23039%3B%20data-zp-cite%3D%26%23039%3Bapi_user_id%3D2323737%26amp%3Bitem_key%3DRCB4GPF9%26%23039%3B%20href%3D%26%23039%3Bjavascript%3Avoid%280%29%3B%26%23039%3B%26gt%3BCite%26lt%3B%5C%2Fa%26gt%3B%20%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Signaling%20and%20transcriptional%20dynamics%20underlying%20early%20adaptation%20to%20oncogenic%20BRAF%20inhibition%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Cameron%20T.%22%2C%22lastName%22%3A%22Flower%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Chunmei%22%2C%22lastName%22%3A%22Liu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hui-Yu%22%2C%22lastName%22%3A%22Chuang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xiaoyang%22%2C%22lastName%22%3A%22Ye%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hanjun%22%2C%22lastName%22%3A%22Cheng%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22James%20R.%22%2C%22lastName%22%3A%22Heath%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wei%22%2C%22lastName%22%3A%22Wei%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Forest%20M.%22%2C%22lastName%22%3A%22White%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222024%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%22%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.biorxiv.org%5C%2Fcontent%5C%2F10.1101%5C%2F2024.02.19.581004.abstract%22%2C%22collections%22%3A%5B%222RQKSFR5%22%5D%2C%22dateModified%22%3A%222025-01-29T00%3A02%3A07Z%22%7D%7D%2C%7B%22key%22%3A%22HX89NNCK%22%2C%22library%22%3A%7B%22id%22%3A2323737%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Yang%20et%20al.%22%2C%22parsedDate%22%3A%222024%22%2C%22numChildren%22%3A2%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%201.35%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BYang%2C%20Liwei%2C%20Juho%20Kim%2C%20Long%20Chen%2C%20Wei%20Wei%2C%20and%20Jun%20Wang.%202024.%20%26%23x201C%3BDetection%20of%20%26gt%3B400%20CD%20Biomarkers%20and%20Pathway%20Proteins%20in%20Single%20Immune%20Cells%20by%20Cyclic%20MIST%20for%20Single-Cell%20Proteomic%20Studies.%26%23x201D%3B%20%26lt%3Bi%26gt%3BAnalytical%20Chemistry%26lt%3B%5C%2Fi%26gt%3B%2096%20%2843%29%3A%2017387%26%23×2013%3B95.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttp%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facs.analchem.4c04239%26%23039%3B%26gt%3Bhttp%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facs.analchem.4c04239%26lt%3B%5C%2Fa%26gt%3B.%20%26lt%3Ba%20title%3D%26%23039%3BCite%20in%20RIS%20Format%26%23039%3B%20class%3D%26%23039%3Bzp-CiteRIS%26%23039%3B%20data-zp-cite%3D%26%23039%3Bapi_user_id%3D2323737%26amp%3Bitem_key%3DHX89NNCK%26%23039%3B%20href%3D%26%23039%3Bjavascript%3Avoid%280%29%3B%26%23039%3B%26gt%3BCite%26lt%3B%5C%2Fa%26gt%3B%20%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Detection%20of%20%3E400%20CD%20Biomarkers%20and%20Pathway%20Proteins%20in%20Single%20Immune%20Cells%20by%20Cyclic%20MIST%20for%20Single-Cell%20Proteomic%20Studies%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Liwei%22%2C%22lastName%22%3A%22Yang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Juho%22%2C%22lastName%22%3A%22Kim%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Long%22%2C%22lastName%22%3A%22Chen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wei%22%2C%22lastName%22%3A%22Wei%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jun%22%2C%22lastName%22%3A%22Wang%22%7D%5D%2C%22abstractNote%22%3A%22The%20identification%20and%20characterization%20of%20immune%20cell%20subpopulations%20is%20critical%20to%20reveal%20cell%20development%20throughout%20life%20and%20immune%20responses%20to%20environmental%20factors.%20Next-generation%20sequencing%20technologies%20have%20dramatically%20advanced%20single-cell%20genomics%20and%20transcriptomics%20for%20immune%20cell%20classification.%20However%2C%20gene%20expression%20is%20often%20not%20correlated%20with%20protein%20expression%2C%20and%20immunotyping%20is%20mostly%20accepted%20in%20the%20protein%20format.%20Current%20single-cell%20proteomic%20technologies%20are%20either%20limited%20in%20multiplex%20capacity%20or%20not%20sensitive%20enough%20to%20detect%20the%20critical%20functional%20proteins.%20Herein%20we%20present%20a%20single%20cells%20cyclic%20multiplex%20in%20situ%20tagging%20%28CycMIST%29%20technology%20to%20simultaneously%20measure%20%26gt%3B400%20proteins%2C%20a%20scale%20of%20%26gt%3B10%20times%20than%20similar%20technologies.%20Such%20an%20ultra-high%20multiplexity%20is%20achieved%20by%20reiterative%20staining%20of%20the%20single%20cells%20coupled%20with%20a%20MIST%20array%20for%20detection.%20This%20technology%20has%20been%20thoroughly%20validated%20through%20comparison%20with%20flow%20cytometry%20and%20fluorescence%20immunostaining%20techniques.%20Both%20peripheral%20blood%20mononuclear%20cells%20%28PBMCs%29%20and%20T%20cells%20are%20analyzed%20by%20the%20CycMIST%20technology%2C%20and%20almost%20the%20entire%20spectrum%20of%20cluster%20of%20differentiation%20%28CD%29%20surface%20markers%20have%20been%20measured.%20The%20landscape%20of%20fluctuation%20of%20CD%20protein%20expression%20in%20single%20cells%20has%20been%20uncovered%20by%20our%20technology.%20Further%20study%20found%20T%20cell%20activation%20signatures%20and%20the%20protein-protein%20networks.%20This%20study%20represents%20the%20highest%20multiplexity%20of%20single%20immune%20cell%20marker%20measurement%20targeting%20functional%20proteins.%20With%20additional%20information%20from%20intracellular%20proteins%20of%20the%20same%20single%20cells%2C%20our%20technology%20can%20potentially%20facilitate%20mechanistic%20studies%20of%20immune%20responses%20under%20various%20disease%20conditions.%22%2C%22date%22%3A%222024%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1021%5C%2Facs.analchem.4c04239%22%2C%22ISSN%22%3A%220003-2700%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.ncbi.nlm.nih.gov%5C%2Fpmc%5C%2Farticles%5C%2FPMC11648578%5C%2F%22%2C%22collections%22%3A%5B%222RQKSFR5%22%5D%2C%22dateModified%22%3A%222024-12-23T21%3A41%3A57Z%22%7D%7D%2C%7B%22key%22%3A%22WEQXDYM9%22%2C%22library%22%3A%7B%22id%22%3A2323737%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kim%20et%20al.%22%2C%22parsedDate%22%3A%222024%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%201.35%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BKim%2C%20Jungwoo%2C%20Rachel%20H.%20Ng%2C%20JingXin%20Liang%2C%20Dazy%20Johnson%2C%20Young%20Shik%20Shin%2C%20Arion%20F.%20Chatziioannou%2C%20Michael%20E.%20Phelps%2C%20Wei%20Wei%2C%20Raphael%20D.%20Levine%2C%20and%20James%20R.%20Heath.%202024.%20%26%23x201C%3BKinetic%20Trajectories%20of%20Glucose%20Uptake%20in%20Single%20Cancer%20Cells%20Reveal%20a%20Drug-Induced%20Cell-State%20Change%20Within%20Hours%20of%20Drug%20Treatment.%26%23x201D%3B%20%26lt%3Bi%26gt%3BThe%20Journal%20of%20Physical%20Chemistry.%20B%26lt%3B%5C%2Fi%26gt%3B.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttp%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facs.jpcb.4c03663%26%23039%3B%26gt%3Bhttp%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facs.jpcb.4c03663%26lt%3B%5C%2Fa%26gt%3B.%20%26lt%3Ba%20title%3D%26%23039%3BCite%20in%20RIS%20Format%26%23039%3B%20class%3D%26%23039%3Bzp-CiteRIS%26%23039%3B%20data-zp-cite%3D%26%23039%3Bapi_user_id%3D2323737%26amp%3Bitem_key%3DWEQXDYM9%26%23039%3B%20href%3D%26%23039%3Bjavascript%3Avoid%280%29%3B%26%23039%3B%26gt%3BCite%26lt%3B%5C%2Fa%26gt%3B%20%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Kinetic%20Trajectories%20of%20Glucose%20Uptake%20in%20Single%20Cancer%20Cells%20Reveal%20a%20Drug-Induced%20Cell-State%20Change%20Within%20Hours%20of%20Drug%20Treatment%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jungwoo%22%2C%22lastName%22%3A%22Kim%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rachel%20H.%22%2C%22lastName%22%3A%22Ng%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22JingXin%22%2C%22lastName%22%3A%22Liang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dazy%22%2C%22lastName%22%3A%22Johnson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Young%20Shik%22%2C%22lastName%22%3A%22Shin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Arion%20F.%22%2C%22lastName%22%3A%22Chatziioannou%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%20E.%22%2C%22lastName%22%3A%22Phelps%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wei%22%2C%22lastName%22%3A%22Wei%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Raphael%20D.%22%2C%22lastName%22%3A%22Levine%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22James%20R.%22%2C%22lastName%22%3A%22Heath%22%7D%5D%2C%22abstractNote%22%3A%22The%20development%20of%20drug%20resistance%20is%20a%20nearly%20universal%20phenomenon%20in%20patients%20with%20glioblastoma%20multiforme%20%28GBM%29%20brain%20tumors.%20Upon%20treatment%2C%20GBM%20cancer%20cells%20may%20initially%20undergo%20a%20drug-induced%20cell-state%20change%20to%20a%20drug-tolerant%2C%20slow-cycling%20state.%20The%20kinetics%20of%20that%20process%20are%20not%20well%20understood%2C%20in%20part%20due%20to%20the%20heterogeneity%20of%20GBM%20tumors%20and%20tumor%20models%2C%20which%20can%20confound%20the%20interpretation%20of%20kinetic%20data.%20Here%2C%20we%20resolve%20drug-adaptation%20kinetics%20in%20a%20patient-derived%20in%20vitro%20GBM%20tumor%20model%20characterized%20by%20the%20epithelial%20growth%20factor%20receptor%20%28EGFR%29%20variant%28v%29III%20oncogene%20treated%20with%20an%20EGFR%20inhibitor.%20We%20use%20radiolabeled%2018F-fluorodeoxyglucose%20%28FDG%29%20to%20monitor%20the%20glucose%20uptake%20trajectories%20of%20single%20GBM%20cancer%20cells%20over%20a%2012%20h%20period%20of%20drug%20treatment.%20Autocorrelation%20analysis%20of%20the%20single-cell%20glucose%20uptake%20trajectories%20reveals%20evidence%20of%20a%20drug-induced%20cell-state%20change%20from%20a%20high-%20to%20low-glycolytic%20phenotype%20after%205-7%20h%20of%20drug%20treatment.%20Information%20theoretic%20analysis%20of%20a%20bulk%20transcriptome%20kinetic%20series%20of%20the%20GBM%20tumor%20model%20delineated%20the%20underlying%20molecular%20mechanisms%20driving%20the%20cellular%20state%20change%2C%20including%20a%20shift%20from%20a%20stem-like%20mesenchymal%20state%20to%20a%20more%20differentiated%2C%20slow-cycling%20astrocyte-like%20state.%20Our%20results%20demonstrate%20that%20complex%20drug-induced%20cancer%20cell-state%20changes%20of%20cancer%20cells%20can%20be%20captured%20via%20measurements%20of%20single%20cell%20metabolic%20trajectories%20and%20reveal%20the%20extremely%20facile%20nature%20of%20drug%20adaptation.%22%2C%22date%22%3A%222024%22%2C%22language%22%3A%22eng%22%2C%22DOI%22%3A%2210.1021%5C%2Facs.jpcb.4c03663%22%2C%22ISSN%22%3A%221520-5207%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%222RQKSFR5%22%5D%2C%22dateModified%22%3A%222024-08-08T19%3A44%3A30Z%22%7D%7D%2C%7B%22key%22%3A%22T278QC2W%22%2C%22library%22%3A%7B%22id%22%3A2323737%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Jiang%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%201.35%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BJiang%2C%20Jianjun%2C%20Na%20Ge%2C%20Yuzhi%20Wang%2C%20Juntao%20Qi%2C%20Guibiao%20Wen%2C%20Xiufen%20Gu%2C%20Xuewen%20Yu%2C%20et%20al.%202023.%20%26%23x201C%3BCastration%20Model%20Illuminates%20Sex%20Differences%20in%20Healthy%20Aging%3A%20Insights%20from%20Metabolome%20and%20Transcriptome%20Analyses.%26%23x201D%3B%20bioRxiv.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttp%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1101%5C%2F2023.12.27.573488%26%23039%3B%26gt%3Bhttp%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1101%5C%2F2023.12.27.573488%26lt%3B%5C%2Fa%26gt%3B.%20%26lt%3Ba%20title%3D%26%23039%3BCite%20in%20RIS%20Format%26%23039%3B%20class%3D%26%23039%3Bzp-CiteRIS%26%23039%3B%20data-zp-cite%3D%26%23039%3Bapi_user_id%3D2323737%26amp%3Bitem_key%3DT278QC2W%26%23039%3B%20href%3D%26%23039%3Bjavascript%3Avoid%280%29%3B%26%23039%3B%26gt%3BCite%26lt%3B%5C%2Fa%26gt%3B%20%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22preprint%22%2C%22title%22%3A%22Castration%20Model%20Illuminates%20Sex%20Differences%20in%20Healthy%20Aging%3A%20Insights%20from%20Metabolome%20and%20Transcriptome%20Analyses%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jianjun%22%2C%22lastName%22%3A%22Jiang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Na%22%2C%22lastName%22%3A%22Ge%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yuzhi%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Juntao%22%2C%22lastName%22%3A%22Qi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Guibiao%22%2C%22lastName%22%3A%22Wen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xiufen%22%2C%22lastName%22%3A%22Gu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xuewen%22%2C%22lastName%22%3A%22Yu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Muming%22%2C%22lastName%22%3A%22Shao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yueming%22%2C%22lastName%22%3A%22Luo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kangshuyun%22%2C%22lastName%22%3A%22Gu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Feng%22%2C%22lastName%22%3A%22Lin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Shudong%22%2C%22lastName%22%3A%22Yang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wei%22%2C%22lastName%22%3A%22Wei%22%7D%5D%2C%22abstractNote%22%3A%22Females%20typically%20outlive%20males%2C%20a%20disparity%20mitigated%20by%20castration%2C%20yet%20the%20molecular%20underpinnings%20remain%20elusive.%20Our%20study%20leverages%20untargeted%20metabolomics%20and%20RNA%20sequencing%20to%20uncover%20the%20pivotal%20compounds%20and%20genes%20influencing%20healthy%20aging%20post-castration%2C%20examining%20serum%2C%20kidney%2C%20and%20liver%20biospecimens%20from%2012-week%20and%2018-month%20old%20castrated%20male%20mice%20and%20their%20unaltered%20counterparts.%20Behavioral%20tests%20and%20LC-MS%5C%2FMS%20metabolomics%20reveal%20that%20castrated%20males%20exhibit%20altered%20steroid%20hormones%2C%20superior%20cognitive%20performance%2C%20and%20higher%20levels%20of%20anti-oxidative%20compounds%20like%20taurine%2C%20despite%20identical%20diets.%20Integrated%20metabolome-transcriptome%20analysis%20confirms%20reduced%20lipid%20peroxidation%20and%20oxidative%20stress%20in%20female%20and%20castrated%20male%20mice%2C%20suggesting%20a%20protective%20mechanism%20against%20aging.%20Histological%20examinations%20post-%20cisplatin%20treatment%20highlight%20the%20model%5Cu2019s%20applicability%20in%20studying%20drug%20toxicity%20and%20reveal%20varying%20susceptibility%20in%20organ-specific%20toxicities%2C%20underlining%20the%20crucial%20role%20of%20sex%20hormones%20in%20physiological%20defenses.%20In%20essence%2C%20our%20castration%20model%20unveils%20a%20feminized%20metabolic%20and%20transcriptomic%20intermediary%2C%20serving%20as%20a%20robust%20tool%20for%20studying%20gender-specific%20aspects%20of%20healthy%20aging%20and%20exploring%20sex%20hormone-induced%20differences%20in%20diverse%20biomedical%20domains.%22%2C%22genre%22%3A%22%22%2C%22repository%22%3A%22bioRxiv%22%2C%22archiveID%22%3A%22%22%2C%22date%22%3A%222023%22%2C%22DOI%22%3A%2210.1101%5C%2F2023.12.27.573488%22%2C%22citationKey%22%3A%22%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.biorxiv.org%5C%2Fcontent%5C%2F10.1101%5C%2F2023.12.27.573488v1%22%2C%22language%22%3A%22en%22%2C%22collections%22%3A%5B%222RQKSFR5%22%5D%2C%22dateModified%22%3A%222024-02-06T08%3A27%3A17Z%22%7D%7D%2C%7B%22key%22%3A%22UNIEM7GY%22%2C%22library%22%3A%7B%22id%22%3A2323737%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Cheng%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%201.35%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BCheng%2C%20Hanjun%2C%20Yin%20Tang%2C%20Zhonghan%20Li%2C%20Zhili%20Guo%2C%20James%20R.%20Heath%2C%20Min%20Xue%2C%20and%20Wei%20Wei.%202023.%20%26%23x201C%3BNon-Mass%20Spectrometric%20Targeted%20Single-Cell%20Metabolomics.%26%23x201D%3B%20%26lt%3Bi%26gt%3BTrends%20in%20Analytical%20Chemistry%3A%20TRAC%26lt%3B%5C%2Fi%26gt%3B%20168%3A%20117300.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttp%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.trac.2023.117300%26%23039%3B%26gt%3Bhttp%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.trac.2023.117300%26lt%3B%5C%2Fa%26gt%3B.%20%26lt%3Ba%20title%3D%26%23039%3BCite%20in%20RIS%20Format%26%23039%3B%20class%3D%26%23039%3Bzp-CiteRIS%26%23039%3B%20data-zp-cite%3D%26%23039%3Bapi_user_id%3D2323737%26amp%3Bitem_key%3DUNIEM7GY%26%23039%3B%20href%3D%26%23039%3Bjavascript%3Avoid%280%29%3B%26%23039%3B%26gt%3BCite%26lt%3B%5C%2Fa%26gt%3B%20%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Non-Mass%20Spectrometric%20Targeted%20Single-Cell%20Metabolomics%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hanjun%22%2C%22lastName%22%3A%22Cheng%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yin%22%2C%22lastName%22%3A%22Tang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zhonghan%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zhili%22%2C%22lastName%22%3A%22Guo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22James%20R.%22%2C%22lastName%22%3A%22Heath%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Min%22%2C%22lastName%22%3A%22Xue%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wei%22%2C%22lastName%22%3A%22Wei%22%7D%5D%2C%22abstractNote%22%3A%22Metabolic%20assays%20serve%20as%20pivotal%20tools%20in%20biomedical%20research%2C%20offering%20keen%20insights%20into%20cellular%20physiological%20and%20pathological%20states.%20While%20mass%20spectrometry%20%28MS%29-based%20metabolomics%20remains%20the%20gold%20standard%20for%20comprehensive%2C%20multiplexed%20analyses%20of%20cellular%20metabolites%2C%20innovative%20technologies%20are%20now%20emerging%20for%20the%20targeted%2C%20quantitative%20scrutiny%20of%20metabolites%20and%20metabolic%20pathways%20at%20the%20single-cell%20level.%20In%20this%20review%2C%20we%20elucidate%20an%20array%20of%20these%20advanced%20methodologies%2C%20spanning%20synthetic%20and%20surface%20chemistry%20techniques%2C%20imaging-based%20methods%2C%20and%20electrochemical%20approaches.%20We%20summarize%20the%20rationale%2C%20design%20principles%2C%20and%20practical%20applications%20for%20each%20method%2C%20and%20underscore%20the%20synergistic%20benefits%20of%20integrating%20single-cell%20metabolomics%20%28scMet%29%20with%20other%20single-cell%20omics%20technologies.%20Concluding%2C%20we%20identify%20prevailing%20challenges%20in%20the%20targeted%20scMet%20arena%20and%20offer%20a%20forward-looking%20commentary%20on%20future%20avenues%20and%20opportunities%20in%20this%20rapidly%20evolving%20field.%22%2C%22date%22%3A%222023%22%2C%22language%22%3A%22eng%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.trac.2023.117300%22%2C%22ISSN%22%3A%220165-9936%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%222RQKSFR5%22%5D%2C%22dateModified%22%3A%222023-10-24T15%3A48%3A22Z%22%7D%7D%2C%7B%22key%22%3A%22ETPKC5T6%22%2C%22library%22%3A%7B%22id%22%3A2323737%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Flower%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%201.35%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BFlower%2C%20Cameron%20T.%2C%20Chunmei%20Liu%2C%20James%20R.%20Heath%2C%20Wei%20Wei%2C%20and%20Forest%20M.%20White.%202023.%20%26%23x201C%3BAbstract%204876%3A%20A%20Systems%20Pharmacology%20Approach%20to%20Discover%20Synergistic%20Targeted%20Therapy%20Combinations.%26%23x201D%3B%20%26lt%3Bi%26gt%3BCancer%20Research%26lt%3B%5C%2Fi%26gt%3B%2083%20%287_Supplement%29%3A%204876.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttp%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1158%5C%2F1538-7445.AM2023-4876%26%23039%3B%26gt%3Bhttp%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1158%5C%2F1538-7445.AM2023-4876%26lt%3B%5C%2Fa%26gt%3B.%20%26lt%3Ba%20title%3D%26%23039%3BCite%20in%20RIS%20Format%26%23039%3B%20class%3D%26%23039%3Bzp-CiteRIS%26%23039%3B%20data-zp-cite%3D%26%23039%3Bapi_user_id%3D2323737%26amp%3Bitem_key%3DETPKC5T6%26%23039%3B%20href%3D%26%23039%3Bjavascript%3Avoid%280%29%3B%26%23039%3B%26gt%3BCite%26lt%3B%5C%2Fa%26gt%3B%20%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Abstract%204876%3A%20A%20systems%20pharmacology%20approach%20to%20discover%20synergistic%20targeted%20therapy%20combinations%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Cameron%20T.%22%2C%22lastName%22%3A%22Flower%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Chunmei%22%2C%22lastName%22%3A%22Liu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22James%20R.%22%2C%22lastName%22%3A%22Heath%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wei%22%2C%22lastName%22%3A%22Wei%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Forest%20M.%22%2C%22lastName%22%3A%22White%22%7D%5D%2C%22abstractNote%22%3A%22The%20discovery%20of%20oncogenic%20signal%20transduction%20in%20cancer%20has%20enabled%20the%20development%20and%20clinical%20use%20of%20dozens%20of%20kinase-directed%20targeted%20therapies%2C%20but%20patient%20response%20is%20often%20transient%20and%20resistance%20invariably%20develops.%20In%20the%20setting%20of%20BRAF-mutant%20melanoma%2C%20for%20instance%2C%20a%20majority%20of%20patients%20relapse%20within%20one%20year%20of%20initiating%20targeted%20therapy.%20Combination%20therapies%20blocking%20compensatory%20signaling%20pathways%20provide%20a%20strategy%20for%20boosting%20treatment%20efficacy%20and%20delaying%20resistance.%20To%20find%20synergistic%20kinase%20inhibitor%20combinations%2C%20we%20used%20a%20multimodal%20systems%20pharmacology%20approach%20to%20quantify%20the%20early%20adaptive%20signaling%20and%20gene%20regulatory%20dynamics%20in%20patient-derived%20BRAFV600E-mutant%20melanoma%20cells%20under%20oncogene%20inhibition.%20Cells%20were%20treated%20with%20vemurafenib%20or%20vehicle%20and%20sampled%20longitudinally%20at%20timepoints%20spanning%20minutes%20to%20days.%20To%20measure%20signaling%20dynamics%2C%20thousands%20of%20protein%20phosphorylation%20sites%20covering%20commonly%20altered%20signaling%20axes%20in%20cancer%20were%20motif-enriched%20by%20immunoprecipitation%2C%20barcoded%20with%20isobaric%20tandem%20mass%20tags%20%28TMT%29%2C%20and%20quantified%20by%20high-resolution%20mass%20spectrometry%20%28MS%29.%20The%20resulting%20time-resolved%20phosphoproteomics%20data%20showed%20rapid%20%28%26lt%3B15%20minutes%29%20and%20potent%20%28%26gt%3B8-fold%29%20downregulation%20of%20ERK1%5C%2F2%2C%20confirming%20strong%20BRAF%20inhibition.%20Statistical%20integration%20of%20signaling%20measurements%20with%20time-series%20RNA-seq%20data%20collected%20at%20the%20same%20timepoints%20enabled%20reconstruction%20of%20multi-scale%20regulatory%20networks%20governing%20the%20adaptive%20response%20to%20oncogene%20inhibition.%20In%20particular%2C%20we%20observed%20early%20induction%20of%20SRC-family%20kinase%20%28SFK%29%20signaling%20and%20a%20broad%20cytoskeletal%20signaling%20module%2C%20implicating%20a%20compensatory%20prosurvival%20signaling%20program.%20The%20induction%20intensified%20over%20the%203-day%20treatment%20window%20and%20was%20fully%20reversed%20following%20a%206-day%20drug%20holiday%2C%20suggesting%20a%20reversible%20nature%20of%20drug%20adaptation.%20Immunoblotting%20confirmed%20sustained%20loss%20of%20ERK1%5C%2F2%20activity%20and%20concomitant%20elevated%20SFK%20phosphorylation%20following%20drug%20treatment.%20Accumulation%20of%20reactive%20oxygen%20species%2C%20a%20known%20activator%20of%20SFKs%2C%20strongly%20correlated%20with%20SFK%20activity%2C%20and%20both%20were%20ablated%20following%20treatment%20with%20the%20antioxidant%20precursor%20N-acetylcysteine.%20This%20adaptive%20response%20predicted%20a%20significant%20degree%20of%20synergy%20between%20vemurafenib%20and%20the%20pan-SFK%20inhibitor%20dasatinib%2C%20which%20was%20validated%20in%20a%20panel%20of%20patient-derived%20melanoma%20cell%20lines%20and%20in%20melanoma%20xenograft%20mouse%20models.%20Targeted%20MS%20of%20phospho-ERK1%5C%2F2%20and%20canonical%20SFK%20substrates%2C%20including%20CTTN%2C%20PXN%2C%20and%20PAG1%2C%20validated%20the%20mechanism%20of%20action%20of%20this%20combination.%20Complementary%20data%20from%20patient-derived%20non%20small-cell%20lung%20cancer%20%28NSCLC%29%20cells%20under%20tyrosine%20kinase%20inhibitor%20treatment%20demonstrates%20the%20generality%20of%20our%20integrative%20approach%2C%20and%20supports%20the%20notion%20that%20SFK%20activation%20may%20be%20a%20hallmark%20response%20to%20oncogenic%20RTK-RAS-ERK%20pathway%20inhibition.Citation%20Format%3A%20Cameron%20T.%20Flower%2C%20Chunmei%20Liu%2C%20James%20R.%20Heath%2C%20Wei%20Wei%2C%20Forest%20M.%20White.%20A%20systems%20pharmacology%20approach%20to%20discover%20synergistic%20targeted%20therapy%20combinations.%20%5Babstract%5D.%20In%3A%20Proceedings%20of%20the%20American%20Association%20for%20Cancer%20Research%20Annual%20Meeting%202023%3B%20Part%201%20%28Regular%20and%20Invited%20Abstracts%29%3B%202023%20Apr%2014-19%3B%20Orlando%2C%20FL.%20Philadelphia%20%28PA%29%3A%20AACR%3B%20Cancer%20Res%202023%3B83%287_Suppl%29%3AAbstract%20nr%204876.%22%2C%22date%22%3A%222023%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1158%5C%2F1538-7445.AM2023-4876%22%2C%22ISSN%22%3A%220008-5472%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1158%5C%2F1538-7445.AM2023-4876%22%2C%22collections%22%3A%5B%222RQKSFR5%22%5D%2C%22dateModified%22%3A%222023-06-30T17%3A02%3A47Z%22%7D%7D%2C%7B%22key%22%3A%22H8HHSDL4%22%2C%22library%22%3A%7B%22id%22%3A2323737%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Ye%20et%20al.%22%2C%22parsedDate%22%3A%222022%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%26lt%3Bdiv%20class%3D%26quot%3Bcsl-bib-body%26quot%3B%20style%3D%26quot%3Bline-height%3A%201.35%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%26quot%3B%26gt%3B%5Cn%20%20%26lt%3Bdiv%20class%3D%26quot%3Bcsl-entry%26quot%3B%26gt%3BYe%2C%20Shengda%2C%20Bin%20Yang%2C%20Tingbao%20Zhang%2C%20Wei%20Wei%2C%20Zhiqiang%20Li%2C%20Jincao%20Chen%2C%20and%20Xiang%20Li.%202022.%20%26%23x201C%3BIdentification%20of%20an%20Immune-Related%20Prognostic%20Signature%20for%20Glioblastoma%20by%20Comprehensive%20Bioinformatics%20and%20Experimental%20Analyses.%26%23x201D%3B%20%26lt%3Bi%26gt%3BCells%26lt%3B%5C%2Fi%26gt%3B%2011%20%2819%29%3A%203000.%20%26lt%3Ba%20class%3D%26%23039%3Bzp-DOIURL%26%23039%3B%20href%3D%26%23039%3Bhttp%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Fcells11193000%26%23039%3B%26gt%3Bhttp%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Fcells11193000%26lt%3B%5C%2Fa%26gt%3B.%20%26lt%3Ba%20title%3D%26%23039%3BCite%20in%20RIS%20Format%26%23039%3B%20class%3D%26%23039%3Bzp-CiteRIS%26%23039%3B%20data-zp-cite%3D%26%23039%3Bapi_user_id%3D2323737%26amp%3Bitem_key%3DH8HHSDL4%26%23039%3B%20href%3D%26%23039%3Bjavascript%3Avoid%280%29%3B%26%23039%3B%26gt%3BCite%26lt%3B%5C%2Fa%26gt%3B%20%26lt%3B%5C%2Fdiv%26gt%3B%5Cn%26lt%3B%5C%2Fdiv%26gt%3B%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Identification%20of%20an%20Immune-Related%20Prognostic%20Signature%20for%20Glioblastoma%20by%20Comprehensive%20Bioinformatics%20and%20Experimental%20Analyses%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Shengda%22%2C%22lastName%22%3A%22Ye%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bin%22%2C%22lastName%22%3A%22Yang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tingbao%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wei%22%2C%22lastName%22%3A%22Wei%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zhiqiang%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jincao%22%2C%22lastName%22%3A%22Chen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xiang%22%2C%22lastName%22%3A%22Li%22%7D%5D%2C%22abstractNote%22%3A%22Background%3A%20Glioblastoma%20%28GBM%29%2C%20which%20has%20a%20poor%20prognosis%2C%20accounts%20for%2031%25%20of%20all%20cancers%20in%20the%20brain%20and%20central%20nervous%20system.%20There%20is%20a%20paucity%20of%20research%20on%20prognostic%20indicators%20associated%20with%20the%20tumor%20immune%20microenvironment%20in%20GBM%20patients.%20Accurate%20tools%20for%20risk%20assessment%20of%20GBM%20patients%20are%20urgently%20needed.%20Methods%3A%20In%20this%20study%2C%20we%20used%20weighted%20gene%20co-expression%20network%20analysis%20%28WGCNA%29%20and%20differentially%20expressed%20gene%20%28DEG%29%20methods%20to%20screen%20out%20GBM-related%20genes%20among%20immune-related%20genes%20%28IRGs%29.%20Then%2C%20we%20used%20survival%20analysis%20and%20Cox%20regression%20analysis%20to%20identify%20prognostic%20genes%20among%20the%20GBM-related%20genes%20to%20further%20establish%20a%20risk%20signature%2C%20which%20was%20validated%20using%20methods%20including%20ROC%20analysis%2C%20stratification%20analysis%2C%20protein%20expression%20level%20validation%20%28HPA%29%2C%20gene%20expression%20level%20validation%20based%20on%20public%20cohorts%2C%20and%20RT-qPCR.%20In%20order%20to%20provide%20clinicians%20with%20a%20useful%20tool%20to%20predict%20survival%2C%20a%20nomogram%20based%20on%20an%20assessment%20of%20IRGs%20and%20clinicopathological%20features%20was%20constructed%20and%20further%20validated%20using%20DCA%2C%20time-dependent%20ROC%20curve%2C%20etc.%20Results%3A%20Three%20immune-related%20genes%20were%20found%3A%20PPP4C%20%28p%20%26lt%3B%200.001%2C%20HR%20%3D%200.514%29%2C%20C5AR1%20%28p%20%26lt%3B%200.001%2C%20HR%20%3D%201.215%29%2C%20and%20IL-10%20%28p%20%26lt%3B%200.001%2C%20HR%20%3D%201.047%29.%20An%20immune-related%20prognostic%20signature%20%28IPS%29%20was%20built%20to%20calculate%20risk%20scores%20for%20GBM%20patients%3B%20patients%20classified%20into%20different%20risk%20groups%20had%20significant%20differences%20in%20survival%20%28p%20%3D%200.006%29.%20Then%2C%20we%20constructed%20a%20nomogram%20based%20on%20an%20assessment%20of%20the%20IRG-based%20signature%2C%20which%20was%20validated%20as%20a%20potential%20prediction%20tool%20for%20GBM%20survival%20rates%2C%20showing%20greater%20accuracy%20than%20the%20nomogram%20without%20the%20IPS%20when%20predicting%201-year%20%280.35%20%26lt%3B%20Pt%20%26lt%3B%200.50%29%2C%203-year%20%280.65%20%26lt%3B%20Pt%20%26lt%3B%200.80%29%2C%20and%205-year%20%280.65%20%26lt%3B%20Pt%20%26lt%3B%200.80%29%20survival.%20Conclusions%3A%20In%20conclusion%2C%20we%20integrated%20bioinformatics%20and%20experimental%20approaches%20to%20construct%20an%20IPS%20and%20a%20nomogram%20based%20on%20IPS%20for%20predicting%20GBM%20prognosis.%20The%20signature%20showed%20strong%20potential%20for%20prognostic%20prediction%20and%20could%20help%20in%20developing%20more%20precise%20diagnostic%20approaches%20and%20treatments%20for%20GBM.%22%2C%22date%22%3A%222022%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.3390%5C%2Fcells11193000%22%2C%22ISSN%22%3A%222073-4409%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.mdpi.com%5C%2F2073-4409%5C%2F11%5C%2F19%5C%2F3000%22%2C%22collections%22%3A%5B%222RQKSFR5%22%5D%2C%22dateModified%22%3A%222023-01-18T23%3A58%3A11Z%22%7D%7D%5D%7D
Flower, Cameron T., Chunmei Liu, Hui-Yu Chuang, Xiaoyang Ye, Hanjun Cheng, James R. Heath, Wei Wei, and Forest M. White. 2025. “Signaling and Transcriptional Dynamics Underlying Early Adaptation to Oncogenic BRAF Inhibition.” Cell Systems, 101239. http://doi.org/10.1016/j.cels.2025.101239. Cite
Yang, Liwei, Juho Kim, Long Chen, Wei Wei, and Jun Wang. 2024. “Detection of >400 Cluster of Differentiation Biomarkers and Pathway Proteins in Single Immune Cells by Cyclic Multiplex In Situ Tagging for Single-Cell Proteomic Studies.” Analytical Chemistry 96 (43): 17387–95. http://doi.org/10.1021/acs.analchem.4c04239. Cite
Flower, Cameron T., Chunmei Liu, Hui-Yu Chuang, Xiaoyang Ye, Hanjun Cheng, James R. Heath, Wei Wei, and Forest M. White. 2024. “Signaling and Transcriptional Dynamics Underlying Early Adaptation to Oncogenic BRAF Inhibition.” bioRxiv, 2024–02. https://www.biorxiv.org/content/10.1101/2024.02.19.581004.abstract. Cite
Yang, Liwei, Juho Kim, Long Chen, Wei Wei, and Jun Wang. 2024. “Detection of >400 CD Biomarkers and Pathway Proteins in Single Immune Cells by Cyclic MIST for Single-Cell Proteomic Studies.” Analytical Chemistry 96 (43): 17387–95. http://doi.org/10.1021/acs.analchem.4c04239. Cite
Kim, Jungwoo, Rachel H. Ng, JingXin Liang, Dazy Johnson, Young Shik Shin, Arion F. Chatziioannou, Michael E. Phelps, Wei Wei, Raphael D. Levine, and James R. Heath. 2024. “Kinetic Trajectories of Glucose Uptake in Single Cancer Cells Reveal a Drug-Induced Cell-State Change Within Hours of Drug Treatment.” The Journal of Physical Chemistry. B. http://doi.org/10.1021/acs.jpcb.4c03663. Cite
Jiang, Jianjun, Na Ge, Yuzhi Wang, Juntao Qi, Guibiao Wen, Xiufen Gu, Xuewen Yu, et al. 2023. “Castration Model Illuminates Sex Differences in Healthy Aging: Insights from Metabolome and Transcriptome Analyses.” bioRxiv. http://doi.org/10.1101/2023.12.27.573488. Cite
Cheng, Hanjun, Yin Tang, Zhonghan Li, Zhili Guo, James R. Heath, Min Xue, and Wei Wei. 2023. “Non-Mass Spectrometric Targeted Single-Cell Metabolomics.” Trends in Analytical Chemistry: TRAC 168: 117300. http://doi.org/10.1016/j.trac.2023.117300. Cite
Flower, Cameron T., Chunmei Liu, James R. Heath, Wei Wei, and Forest M. White. 2023. “Abstract 4876: A Systems Pharmacology Approach to Discover Synergistic Targeted Therapy Combinations.” Cancer Research 83 (7_Supplement): 4876. http://doi.org/10.1158/1538-7445.AM2023-4876. Cite
Ye, Shengda, Bin Yang, Tingbao Zhang, Wei Wei, Zhiqiang Li, Jincao Chen, and Xiang Li. 2022. “Identification of an Immune-Related Prognostic Signature for Glioblastoma by Comprehensive Bioinformatics and Experimental Analyses.” Cells 11 (19): 3000. http://doi.org/10.3390/cells11193000. Cite

Wei Lab
Institute for Systems Biology
401 Terry Ave N
Seattle WA 98109

Email: wei.wei@isbscience.org