ISB News

ISB releases open-source software to analyze digital fingerprint of protein data

3 Bullets SWATH mass spectrometry, an emerging protein analysis technique being pioneered by ISB researchers, provides a digital fingerprint of all accessible proteins in a sample. The data generated by the SWATH technique are highly complex and require sophisticated computational tools in order to extract identities from a sea of data. ISB researchers have released a free, open source program that allows users to confidently identify and quantify proteins analyzed…

ISB and P&G researchers identify markers of healthy skin development

3 Bullets: The barrier function of skin is integral to personal well-being and is associated with several widespread diseases such as eczema and psoriasis. ISB and Procter & Gamble researchers used human skin grown in the lab to measure changes in protein levels as the skin matures. The results of this study provide many new markers for healthy skin development. By Dr. Kristian Swearingen and Dr. Jason Winget In a…

Researchers Find Key Protein Tied to Production of ‘Good’ Cholesterol

3 Bullets: Inflammation causes cholesterol buildup and leads to cardiovascular disease, the leading cause of death in the world ISB, Seattle Biomed, and Oregon State University researchers collaborate to identify a compendium of proteins that control expression of a key regulator of cholesterol efflux Targeting cholesterol efflux to HDL is a potentially important therapeutic strategy for preventing and treating cardiovascular disease By Dr. Mark Gillespie Cells of the immune system,…

Baliga Lab: ‘The Universe Under a Microscope’

This is an excerpt from Environmental Microbiology Reports, 2015, authored by Arjun Raman, a postdoc in the Baliga Lab here at Institute for Systems Biology. The beauty of a living thing is not the atoms that go into it, but the way those atoms are put together. Information distilled over four billion years of biological evolution. Incidentally, all the organisms on the Earth are made essentially of that stuff. An…

Tuberculosis Research: A ‘Molecular Road Map’ to Help Understand Gene Regulation

The journal “Trends in Microbiology” recently published a spotlight article on a tuberculosis research collaboration between scientists at Institute for Systems Biology and Seattle BioMed. The paper “The DNA-binding network of Mycobacterium tuberculosis” was published in the journal “Nature Communications” (Jan. 12, 2015): “MTB employs about 200 different molecular switches to sense and respond to the shifting, hostile landscape of the host. To identify and understand the intertwining gene regulatory…

A breakthrough in understanding the genetic ‘architecture’ of bipolar disorder

3 Bullets: Bipolar disorder (BD) is a common, severe and recurrent psychiatric disorder with no known cure and substantial morbidity and mortality. Heritable causes contribute up to 80 percent of lifetime risk for BD. Scientists hope that identifying the specific genes involved in risk for bipolar disorder will lead to new ways to treat the disease. ISB researchers identified contributions of rare variants to BD by sequencing the genomes of…

Into the genetic weeds of hair growth

3 Bullets: ISB researchers used a data-driven mathematical model to identify specific genes associated with hair regeneration Novel methodology paves way for continued research into the molecular basis of this complex cycle as well as other regenerative organs like skin and liver Findings may lead to more precise targets for therapies and genetic markers of hair wellness By Varsha Dhankani Scientists at ISB have identified genes associated with the growth-and-death…

Pushing the Molecular Switches of Tuberculosis Into Overdrive to Map Interactions

3 Bullets: Mycobacterium tuberculosis (MTB) infects more than 1.5 billion people worldwide partly due to its ability to sense and adapt to the broad range of hostile environments that exist within hosts. To study how MTB controls its responses at a molecular level, ISB researchers and their collaborators at Seattle Biomed perturbed almost all MTB transcription factor regulators and identified the affected genes. This comprehensive map of molecular switches in…

The Institute for Systems Biology has a mission to make data available to the world. In a paper recently published in the journal Current Protocols in Bioinformatics, proteomics researchers in the lab of Dr. Robert Moritz provide a step-by-step tutorial demonstrating how to take advantage of web-based applications that let researchers share and use proteomics data.

Let Us Tell You Everything We Know About Proteomics – Everything

3 Bullets: Proteomics experiments generate huge amounts of raw data, most of which cannot be easily shared or described in a publication. ISB researchers curate publicly accessible databases that allow researchers to share their data with the world and to use data others have collected. All data are analyzed in a consistent manner and results are presented via searchable, user-friendly web applications. By Dr. Kristian Swearingen Institute for Systems Biology…

How One Family of Microbial Genes Rewires Itself for New Niches

3 Bullets: When an organism duplicates its genes, it increases its ability to adapt and colonize new environments. ISB researchers used the systems approach to study how one family of microbial genes evolved to bring functions that were adaptive to specific environments. This new understanding of how gene regulatory networks rewire themselves has many potential applications, including how to wire new functions into an organism for biofuel production, bio-remediation or…

What’s the Secret to ‘Extreme Longevity’?

3 Bullets: ISB researchers and their collaborators studied a group of supercentenarians (110 years or older) to explore the genetics of ‘extreme longevity.’ The group performed whole-genome sequencing on 17 supercentenarians in order to look for any rare protein-altering variants associated with extreme longevity. While the researchers did not find a single cause for extreme longevity within this sample size, the genomic data is now available for future studies. By…

How Physics and Thermodynamics Help Assess DNA Defects in Cancer

3 Bullets: ‘Big data’ cancer research has revealed a new spectrum of genetic mutations across tumors that need understanding. Existing methods for analyzing DNA defects in cancer are blind to how those mutations actually behave. ISB scientists developed a new approach using physics- and structure-based modeling to systematically assess the spectrum of mutations that arise in several gene regulatory proteins in cancer. By Jake Valenzuela and Justin Ashworth A significant…

A New Approach to Identifying How the Deadly Dengue Virus Multiplies

3 Bullets: Dengue virus is the most prevalent mosquito-borne virus worldwide, infecting an estimated 400 million people per year and causing about 25,000 deaths. It’s necessary to understand the molecular mechanisms of dengue replication in order to develop an effective treatment. Researchers at ISB and Seattle BioMed developed a novel approach for identifying host proteins that associate with dengue replication machinery. By Thurston Herricks Dengue virus (DENV) infects approximately 400…

New Details on Thyroid Cancer May Lead to More Precise Therapies

3 Bullets: Papillary thyroid cancer represents 80 percent of all thyroid cancer cases. Integrative analysis resulted in the detection of significant molecular alterations not previously reported in the disease. ISB researchers identified microRNAs which may lead to more precise therapy. By Lisa Iype Papillary thyroid cancer (PTC) is the most common type of thyroid cancer, accounting for 80 percent of all cases. As part of The Cancer Genome Atlas (TCGA)…

New Tool Uses 3-D Protein-DNA Structures to Predict Locations of Genetic ‘On-Off’ Switches

3 Bullets: Novel systems approach uses high-resolution structures of protein-DNA complexes to predict where transcription factors (genetic switches) bind and regulate the genome. This approach can help researchers better understand and predict binding sites for non-model organisms or ‘exotic’ species. Having such insight and predictive capabilities is critical for reverse- and forward-engineering organisms that could be pivotal for new green biotechnologies. By Jake Valenzuela and Justin Ashworth Researchers at the…

Baliga Lab: Uncovering the Genetic Adaptability of Tuberculosis

3 Bullets: The Institute for Systems Biology and Seattle BioMed have collaborated to reconstruct the gene regulatory network of the human pathogen Mycobacterium tuberculosis. Finely tuned gene regulation has allowed Mycobacterium tuberculosis to survive unnoticed in an apparently healthy host for decades; understanding those subtleties is critical for advancing treatment. The identification of co-regulated sets of genes and their regulatory influences offers validated predictions that will help guide future research…

Analyzing Family Genomics Reveals New Culprit in Rare Disease

3 Bullets: Adams-Oliver syndrome (AOS) is a rare congenital disease characterized by scalp lesions and limb defects. Additional vascular abnormalities and heart defects can lead to early death in some patients. By analyzing twelve families affected with the disease, we identified causal mutations in a new disease gene, NOTCH1, in five families. NOTCH1 is likely to be the major cause of AOS. NOTCH1 codes for a transcription factor that governs…

New Structural Map Helps To Understand Aggressive Tumors

3 Bullets: Aggressive tumor growth is linked to high activity of a macromolecular assembly called RNA polymerase I. ISB and FHCRC researchers collaborate to map the architecture of the assembly using a powerful crosslinking-mass spectrometry (CXMS) technology. Structural maps provide important insights into therapeutic targets for cancer treatment. By Mark Gillespie Rapidly growing tumor cells require large amounts of protein for their survival. This increased protein synthesis, or translation, can…