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The stunning possibility of ‘‘reprogramming’’ differen-
tiated somatic cells to express a pluripotent stem cell
phenotype (iPS, induced pluripotent stem cell) and the
‘‘ground state’’ character of pluripotency reveal funda-
mental features of cell fate regulation that lie beyond
existing paradigms. The rarity of reprogramming events
appears to contradict the robustness with which the
unfathomably complex phenotype of stem cells can reli-
ably be generated. This apparent paradox, however, is
naturally explained by the rugged ‘‘epigenetic land-
scape’’ with valleys representing ‘‘preprogrammed’’
attractor states that emerge from the dynamical con-
straints of the gene regulatory network. This article pro-
vides a pedagogical primer to the fundamental principles
of gene regulatory networks as integrated dynamic sys-
tems and reviews recent insights in gene expression
noise and fate determination, thereby offering a formal
framework that may help us to understand why cell fate
reprogramming events are inherently rare and yet so
robust.
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Introduction–the subjectivity of surprise

The recent reprogramming of murine adult dermal fibroblasts

into ‘‘induced pluripotent stem cells’’ (iPS) that resemble

embryonic stem (ES) cells(1,2) by overexpressing just four key

transcription factors has surprised many stem cell biolo-

gists.(2,3) A surprise in research can be defined as the

unexpected departure of a finding from the outcome

anticipated by a prevailing paradigm. So what is this

paradigm? The rarely articulated but deeply rooted and

broadly accepted thinking in developmental biology is that the

lineage of a mature cell, once established, is essentially

irreversible.(4) Accordingly, reprogramming the ES-cell phe-

notype in mature cells should not have worked–except by

nuclear transfer into zygotes that will provide the complex
*Correspondence to: S. Huang, Institute for Biocomplexity and Informatics,

University of Calgary, Calgary, AB, Canada.

E-mail: Sui.huang@ucalgary.ca

546
physiological context for ‘‘rebooting’’ the genome by erasing

covalent chromatin marks.(5) Hence, the occasionally

observed plasticity of differentiated cells (beyond simple

transdifferentiation(6) between related cell lineages(7–10)) is

often dismissed as idiosyncratic or is explained by experi-

mental artifacts, such as cell fusion or impurity of the starting

cell culture.(4) Another, surprise was the recent demonstration

that the pluripotent and self-renewing state of ES cells is a

‘‘ground state’’,(11) that is, a natural default state that needs

not to be actively maintained. As we will see, these two

unexpected findings are related.

Since a surprise shines light on the hidden cracks of

existing thinking, let us, in lieu of an attempt at explaining the

unexpected by stretching the current paradigm, question the

paradigm itself. In fact, theoretical biologists who have studied

cell type diversification within the framework of the first

principles of regulatory dynamics and experimental biologists

who have reasoned about cell plasticity(12–17) were hardly

caught off-guard by the revelation of reprogrammability or the

‘‘ground state’’ of pluripotency. Much to the contrary, the new

findings have long been anticipated(18) and they corroborate

the theoretical concepts that will be explained here.

In the brief period since the first report by Yamanaka and

coworkers,(1) reprogramming the pluripotent state in differ-

entiated cells has been replicated with an exploding number

of protocol variations, including starting from a variety of

mature cell types or relying on transient instead of stable

overexpression of transgenes,(2,19–23) thus revealing the

inherent robustness of this process. Yet, the actual event of

reprogramming at the level of individual cells is in general rare,

occurring at a frequency of <1%.(24,25) Thus, one challenge

for a theory will be to explain how a complicated, intuitively

unlikely and rare biological event is inherently robust, that is,

given appropriate conditions, almost inevitable.

Therefore, we would like to present here a conceptual

framework that has long evaded the attention of experimental

biologists, but will offer a different perspective in which both

reprogramming and the ‘‘ground state’’ character of plur-

ipotency will appear natural and expected. More broadly

speaking, perhaps we have always been asking the wrong

question: instead of taking for granted that a cell lineage is

cast in stone once committed, and then wondering how

transdifferentiation or retro-differentiation can occur, let us
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reverse the question: given that all cells in the metazoan body

possess the same set of genes [with the exception of post-

meiotic germ line cells, mature lymphocytes, and cells in

species that exhibit chromosome diminution(26)] and that the

cell’s phenotype is essentially determined by its genome-wide

gene expression pattern, why then do we see discretely

distinct, stable, almost immutable cell types in the first place?

And how do the vastly complex cell type-specific gene

expression profiles, encompassing tens of thousands of

genes, so reliably establish themselves in response to

comparably simple triggers, as if orchestrated by an invisible

hand? Considering that chromatin-modification, once thought

to permanently repress unused genes, is actually dynamic so

that each gene can be reversibly switched on and off, we may

then raise these key hypothetical questions: Why can cells not

simply alter their expression profile to morph from one cell

type to another? What is the very nature of the ‘‘barriers’’ that

prevent such ad libitum inter-conversion between the cell

type-specific expression profiles?

The goal of this article is to explain how ‘‘epigenetic

barriers,’’ which restrict ad libitum inter-conversion between

cell type-specific expression profiles, channel development

and maintain the ‘‘ground state’’ characteristic of pluripotency,

can be understood as a naturally emerging property of a gene

regulatory network (GRN). This will require the formal

treatment of a network as an integrated dynamic system.

We will attempt to achieve our goal without taking refuge in

mathematical equations, but instead, by using formally

rigorous, yet qualitative, and sometimes graphical explana-

tions. Using permissively simplifying and pedagogically

intuitive pictures, we hope to open the eyes of experimental

biologists not familiar with dynamical systems to a set of

principles that will benefit our thinking about the sources of

stability and flexibility of cellular states, and in particular,

help reconcile the rarity and robustness of reprogramming

events.
Premise: from pathways to profiles

In the current paradigm of biological understanding, the

default explanation of an observed cellular behavior, such as

cell fate control, lies in molecular pathways in which individual

molecular regulatory events are linked by an ‘‘arrow-to-arrow’’

scheme (Fig. 1A). In this epistemology, a molecular

‘upstream–downstream’ pathway implies a linear chain of

causation. Thus, cell behavior is explained by a system of

deterministic, causal relationships between symbols. This

qualitative description is disconnected from the elementary

principles of a dynamical system, which the cell’s regulatory

network of genes has to obey.

To find this connection, let us start with the obvious

molecular description of a cell phenotype: our premise is that
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the pattern of expression of active proteins encoded by the

genes throughout the genome, or shortly, the ‘‘gene

expression profile’’, is the essential determinant of a cell’s

phenotype. Then, each cell fate, cell lineage, and cell type in a

higher metazoan constitutes the ‘‘biological observable’’ that

is uniquely associated with a gene expression profile of the

roughlyN¼ 25,000 genes of a mammalian genome. The gene

expression profile is a configuration, i.e., one among many

combinatorial possibilities of the set of N numbers, each

indicating the expression status of the N genes which can be

active (expressed), to varying degrees, or inactive (silenced).

This configuration can be formalized as a state vector,

S ¼ ½x1; x2; . . . ; xN�;

where xi is the level of expression of gene i (the level of

active protein encoded by gene i) in the expression profile S.

Then, each cell type m, which can represent a stem cell, a

progenitor cell of a particular lineage, a particular cell fate or

one of the hundreds of terminally differentiated cell types, is

uniquely associated with a particular state Sm, that is, a

combination of expression values, [x1
m, x2

m, x3
m,. . ., xN

m].

Thus, for instance, x3
m has a high value if gene 3 is highly

expressed in cell type m.

The advent of genome-wide transcript profiling techniques

that allows for the efficient measurement of transcriptomes

offers a glimpse of the state vector S—although a series of

post-transcriptional cellular processes have to be taken

into account when mapping a transcriptome into a cell

phenotype. Nevertheless, transcriptomes are good approx-

imations of the state S of a cell, at least in the time scale of

embryonic development since the presence of mRNA in the

embryo tissue, as typically detected by in situ hybridization,

correlates well with the activity of that gene. Thus, it is not

surprising that cluster analyses of transcript profiles so

reliably separate the various cell lineages.(27–29) However,

there is more we can learn from gene expression profiling than

the routine classification of tissues or the identification of

individual tissue-specific genes, if we examine expression

profiles through the lens of dynamical systems theory and

treat them as an integrated entity.

To demonstrate an elementary meaning of an ‘integrative’

reading of gene expression patterns, let us, for didactic

purposes, assume a toy-genome of four genes. Then, a

particular state Sm in cell type m¼A may be written as

follows: SA¼ [1, 4, 0, 2], meaning that in this profile, gene 1 is

expressed at the level of 1 unit, x1
A¼ 1, and accordingly,

x2
A¼ 4, x3

A¼ 0, and x4
A¼ 2. In any process in which one cell

phenotype changes to another, as most prosaically epito-

mized by cellular differentiation, e.g., from cell type A (a

progenitor cell) to cell type B (a differentiated cell), the

associated gene expression profile will transition from a state

SA¼ [1, 4, 0, 2] to a state SB—for instance, SB¼ [1, 0, 4 , 4].

Thinking in terms of such profiles as ‘‘balance sheets’’ of
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Figure 1. Overview of basic terms: Pathways, Networks, and Profiles. From traditional upstream–downstream genetic pathways (A) to the

formalization of a regulatory network (B), the dynamics of which can be depicted as trajectory in a high-dimensional state space (C) where each

point is a network state, manifest as gene expression profile (D) which maps into a cell state (E). Depicted underneath each cell type is the gene

expression profile as GEDI map.(95) Note the similarity relationships, reflected in the hierarchical clustering dendrogram which distantly captures

the tree-structure of the developmental paths, which corresponds to the trajectories (solid red arrows). Example shows the branching

differentiation of the hematopoietic multipotent cell CMP¼ common myeloid progenitor. GMP¼ granulocyte-monocyte progenitor (myeloid

lineage), MEP¼megakaryocte-erythrocyte progenitor. PU.1 and GATA1 are the respective fate-determining transcription factors (see Fig. 2D);

their expression in GMP and MEP reflect mutual exclusiveness. GEDI map(95) is a method for visual representation of a microarray that

reorganizes the genes so as to create characteristic patterns for the human eye that reflect similarity between patterns. For details see ref.(95).
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numbers without bothering with the molecular pathways

involved in the transition already opens a new vista: the net

amount of ‘‘work’’ that needs to be performed is conceivably

related to how different these two states are from each other.

This can be measured as a distance between the two profiles.

Each gene has to be altered from its expression level in state

SA to meet that which helps define state SB. Thus, the ‘‘high-

dimensional distance’’ between SA and SB is related to the

sum of all the differences in expression levels for each of the

corresponding genes in SA and SB. Both the number of genes

that are differentially expressed as well as the extent by which

these genes have different levels in SA and SB will contribute

to the distance. A simple distance measure, the squared
548
Euclidian distance DAB, sums up the square of these gene-

level differences:

SA ¼ ½1; 4; 0; 2�
�SB ¼ ½1; 0; 4; 4�

0 þ 4 � 4 � 2
! 0 þ 42 þ ð�4Þ2 þ ð�2Þ2 ¼ 36 ¼ DAB

or in brief, DAB¼ (1�1)2þ (4�0)2þ (0�4)2þ (2�4)2¼ 36¼
DAB.

‘‘Distances’’ between gene expression patterns, such as

the (squared) Euclidian distance, are commonplace in

expression profile analysis, as they form the first step used

by cluster analysis to identify groups of similar expression
BioEssays 31:546–560, � 2009 Wiley Periodicals, Inc.
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profiles. But do such distances between profiles have a

biological meaning? The answer is yes, since hierarchical

clustering based on such distance values roughly produces

dendrograms that distantly replicate the familiar branching

cell fate maps of development,(29,30) as exemplified for

hematological development in Fig. 1E. The distance DAB

between cell types A and B may thus provide a first crude

measure for how hard it is to ‘‘go from type A to B’’. Obviously,

the further the distance the ‘‘harder’’ the transition. Transdif-

ferentiation between neighboring branches in the develop-

mental cell fate tree is indeed readily achieved by

overexpression of one single fate-determining transcription

factor.(7–9,31) Interestingly, a recent report suggests that

reprogramming neural stem cells into pluripotent stem cells

could be achieved with higher efficiency than starting with

mature fibroblasts, and even by overexpression of only two

instead of four transcription factors.(21)

We can summarize this first step of integration and

formalization as follows: a cell-type-associated gene expres-

sion profile S is the molecular correlate of the loosely used

metaphor of a (genetic) ‘‘program’’. The term ‘‘reprogram-

ming’’ would imply the deliberate, targeted alteration of one

profile S to another by some manipulation of individual genes.

But something is missing. The above rather primitive

quantitation of ‘‘distance’’ between lineages does not explain

the inherent stability and the discrete nature of cell lineages:

one could reprogram any state S to any other one if one were

able to freely reconfigure the gene expression patterns. Thus,

a biological version of Maxwell’s demon, who would know

every specific gene expression profile of each cell type in the

body, could reprogram any cell type into any other one by

scanning through the genomic DNA and switching on or off

each gene until the desired pattern, S, is achieved. What

makes it hard, however, is the presence of ‘‘barriers’’ between

the profiles that arise from dynamical constraints. But first, let

us briefly discuss the conventional view’s explanation of the

stability of cell type-specific gene expression profiles S.
The conventional molecular biology view
and its limitations–‘‘epigenetic marks’’

In the prevailing epistemologic habit of reducing a cell

phenotype to the molecular embodiments of its causation, the

cell type-specific expression of a gene is explained by the

action of the type-specific transcription factor (TFs)

‘‘upstream’’ of it.(32) This ‘‘proximate explanation’’(33) is of

course not satisfactory. Conversely, the absence of gene

activity, for instance, lack of expression of liver-specific genes

in erythrocytes, is now typically explained by the silencing of

the unneeded genes through DNA methylation and covalent

histone modifications. These covalent marks recruit protein

complexes that further modify chromatin structure, and
BioEssays 31:546–560, � 2009 Wiley Periodicals, Inc.
thereby control the access of the transcriptional machinery

to the regulatory sites on the DNA.(34–38) Because of the

perceived chemical stability of covalent modifications and the

inertia of higher chromatin structure compared to non-

covalent TF-DNA binding, and because of the maintenance

of such modifications through DNA replication,(39) these

mechanisms were readily adopted as the guardians of cell

type-specific gene activation patterns. Such DNA and histone

modifications were given the attribute ‘‘epigenetic’’—an

onomasiologically unfortunate choice(40)—to distinguish

them from genetic, DNA sequence-based mechanism of

inheritance(41) or from the type of somatic differentiation

mediated by loss of genomic DNA in some species.(26)

However, there are two major conceptual flaws in the

notion of a regulatory role for ‘‘epigenetic’’ DNA modification:
(a) L
ack of stability. With the accumulating characterization of

chromatin-modifying enzymes, notably those controlling

histone lysine (de)methylation,(38,42–44) it has become

clear that covalent ‘‘epigenetic’’ modifications are bidirec-

tional (reversible) and highly dynamic.(42,43) Moreover, in

assuring transmission of methylation patterns during DNA

replication, the much-celebrated maintenance DNA

methylase is actually quite error prone, so that DNA

methylation in individual cells rapidly diversifies after a

short clonal expansion.(45) So, if the marking of genes

thought to provide a permanent molecular memory is

actually dynamical and reversible—what maintains line-

age-specific gene expression patterns in an inheritable

fashion across cell divisions?
(b) L
ack of locus-specificity. The enzymes whose catalytic

activity is responsible for covalent ‘‘epigenetic’’ modifica-

tion are not gene-locus specific. They can add or remove

covalent modifications on virtually any gene in the gen-

ome (see below).
If DNA methylation and nucleosome modification can

operate the switch of gene activity for any gene but cannot

control which specific gene to actually switch on or off, then

what system orchestrates the covalent modification machin-

ery at tens of thousands of gene loci in the genome, such that

the appropriate set of genes is (in)activated across the gen-

ome to generate the cell type-specific patterns of gene

expression? Who writes the ‘‘histone-code’’?
A systems view: the orchestrating role of
the gene regulatory network

Obviously, a specific, biologically meaningful pattern of gene

expression requires that the expression of an individual gene

‘‘considers’’ the expression status of other genes. Such

coordination arises from the GRN (defined in Box 1) formed by
549



Gene network architecture: Basic concepts - and misconceptions

The architecture of a GRN is specified by the following attributes: (1) the gene-gene relationships and (2) their directionality

(‘‘who controls whom’’ as denoted by the direction of the arrow connecting the genes), (3) the interaction modalities (inhibition

vs. stimulation) as well as (4) the integrating ‘‘transfer functions’’ (mathematical functions defining the mode of cooperation

between multiple upstream regulators of one gene and joint effect on the output expression kinetics, etc).(98) All these

characteristics are determined by the physicality of specific protein-protein and protein-target DNA interactions, which is

obviously encoded in the sequences of the proteins and the DNA response elements. These interaction determinants

collectively establish what operationally can be defined as the GRN architecture. Currently, only attributes (1) and (2), often

referred to as ‘‘network topology’’ have been systematically determined in simple organisms.(98,99) The GRN architecture

contains the essential information for predicting the behavior or the dynamics of the network, which describes the

coordinated change of expression levels of the individual genes of a network. The conceptual distinction between

architecture and dynamics is, although rarely articulated, of fundamental significance in reaching beyond viewing the arrows

in network schemata as simple symbols of causation (Fig. 1A, B).

Since the interaction specifications of the GRN architecture are determined by the structure of proteins and target DNA

sequence, the GRN architecture is ‘‘hard-wired’’ in the genome: There is only one network per genome. In a commonly used

abstraction, a genome of N genes can then be depicted as a network (mathematically, a ‘‘graph’’)(98) consisting of N nodes

(¼genes) connected by arrows (¼regulatory interactions). [Attributes (1) (2) and (3) can be represented as a ‘signed directed

graph’; and (3) and (4) can be captured by the same mathematical ‘‘transfer’’ function associated with each node] (Fig. 1B).

While the notion that each organism has one genomic network of defined architecture comes naturally to theorists,

experimental biologists often use expressions, such as ‘‘the regulatory network of the liver cell’’ or ‘‘the stem cell network,’’ as

if the network’s wiring structure changes with each cell type or during development. What distinguishes cell lineages is not

that they have different network architectures, but the gene expression profile S, i.e., the activation status of each of the N

nodes in the very same network, as can be approximately assessed by measuring the transcriptome (Fig. 1C, D). Thus, the

genome-wide gene expression pattern S represents a state of THE network in condition (tissue) m, Sm or at time t, or

mathematically, S(t). The fact that a hepatocyte does not express neuron-specific genes does not imply that it has a different

network, but rather, that the very same network is in a different network state S. The genes not expressed in the liver cells

must somehow be suppressed in a sustainable way, directly or indirectly, by genes that establish the liver’s gene expression

profile – this itself is a manifestation of coordination by the entire genomic network.
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the regulatory interactions exerted by genes, such as

signaling and transcription factors, that can modulate the

expression of other genes. The regulatory network imposes

constraints on the collective behavior of genes, that is, on the

changes of the expression profiles S. It is obvious that as a

consequence of gene regulation, individual genes cannot

alter their expression independently. Thus, because of

‘‘regulatory conflicts’’ the vast majority of the combinatorially

possible gene expression configurations S are ‘‘logically

forbidden,’’ while few are favored. If, for instance, gene 1

(unconditionally) inhibits gene 2, then all patterns S in which

gene 1 AND gene 2 are both highly expressed will be

‘‘forbidden.’’ Such forbidden expression patterns are

unstable. They embody the ‘‘barriers’’ that prevent free

inter-conversion between stable gene expression profiles. We

refer to these barriers between stable gene expression

patterns as ‘‘epigenetic barriers’’ since they emerge from the

interaction between the genes—a notion closer to Wadding-

ton’s original meaning of ‘‘epigenetic’’ when he coined the

term in 1940.(46)

In this network view, the concept of chromatin modification

as the prima causa of lineage-specific gene expression
550
patterns, operating ‘‘upstream’’ of the TFs by controlling their

access to DNA target sites, must be revised. Indeed, evidence

is accumulating for a rather reversed role: the TFs

themselves, endowed with sequence-recognition capability,

must be in charge of initiating the opening of chromatin at

specific sites, probably followed by a bidirectional coopera-

tion(37) with the chromatin-modifying enzymes that they

recruit to their target loci.(44,47–52) Since the expression

pattern of TFs is a consequence of the control of the GRN, the

sites of chromatin opening and closing must, in principle,

mirror the dynamics of the gene expression profile.(53) In fact,

the role of ‘‘epigenetic’’ modifications as prima causa has

recently been questioned.(40,54) While not the chief coordi-

nator, chromatin modification could serve as an additional,

important layer of stabilization of expression patterns

established by the network of transcriptional regulation.

If the constraints on gene expression pattern change are

dictated by the GRN, then obviously the epigenetic barriers

must be encoded in the particular structure or ‘‘architecture’’

of the GRN (Box 1). But how do the specific constraints arise

from the network interactions? The answer lies in what is

called the dynamics of the network, which refers to the
BioEssays 31:546–560, � 2009 Wiley Periodicals, Inc.
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temporal behavior of the state S. Studying the dynamics of a

networked system is a standard task in the field of ‘systems

dynamics’ in mathematics and physics.
Network dynamics: the state space,
trajectories, and attractors

To explain the network dynamics, let us further reduce our toy

genome from N¼ 4 to N¼ 2 (Fig. 2A) and discuss a minimal

gene regulatory circuit consisting of two genes, X1 and X2,

which inhibit each other’s expression. Such an architecture of

mutual regulation (inhibition or activation) is, in fact, widely

found among transcription factors that have key roles in cell

fate control in multipotent cells. In such a minimal system, the

gene expression profile represents a circuit state S(t) at time t,

defined by just two variables, the expression level value x1(t)

for gene X1 and x2(t) for X2:

SðtÞ ¼ ½x1ðtÞ; x2ðtÞ�:

A basic, convenient formalism for studying the dynamics of

a network is the concept of a state space, in which every point

corresponds to a circuit state S(t) at time t defined by the
The dynamics of gene expression patterns S: attractor states

For a two-gene circuit at any given time t every circuit state S(t)¼
values, x1(t) and x2(t) which act as the coordinates of the position

allowing us to intuitively describe abstract behaviors of the circuit

so-called ordinary differential equations (ODE) prescribes ho

translate into the trajectory of S(t) at each position in state space

from selected grid points shown in Fig. 2B, which indicate how a

and collectively form the ‘‘vector’’ or ‘‘flow field.’’ The vectors ind

position moves (Fig. 2B), describing the trajectory (for more de

simple mathematical analysis of the equations readily identifies

by the regulatory interactions because they satisfy the circuit c

pointing arrows and are the steady-states (or stationary states o

our example (Fig. 2B). All other (non-stationary) points in the sta

Looking at the flow field as a whole, a global picture of apparently

(Fig. 2B):

The flows converge in SA and SB which hence appear as ‘‘sinks.’

‘‘attractors’’ of the circuit. Upon perturbation of the state SA (or S
displacing it to any point S0 in its close neighborhood, the circuit w

as S0 remains in the basin of attraction. The line that separates t

(boundary between basins).

Importantly, not every state that experiences no forces from the n

is stable. The state SC which sits on the separatrix is also a statio

only when all regulatory influences are exactly balanced, so as n

case when x1¼ x2. Any slight perturbation away from the conditio

or SB (depending on the direction of the perturbation). Thus, S
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expression levels x1(t) or x2(t). For an N¼ 2 gene circuit, the

state space is a two dimensional plane, a coordinate system in

which the variables x1 and x2 are represented by its two axes

(Fig. 2B), so that the position of S(t) identifies the gene

expression pattern [x1(t), x2(t)]. As explained in more detail in

Box 2, the constraints dictate that a given state S(t) will move

(‘‘flow’’) in state space in a particular direction along a

specified trajectory (‘‘if x1 changes by this much, then x2

changes by that much’’). As noted above, most states S in the

state space are not stable due to the regulatory interactions

which urge S to move until a stable state that satisfies the

network interactions is found. Such stable equilibrium states

are the attractorstates and appear as ‘‘sinks’’ (SA and SB) in

the ‘‘flow field’’ of Fig. 2B (Box 2).

This particular 2-gene X1-X2 mutual inhibition circuit

generates two distinct attractor states: one (SA) has the

expression pattern, x1� x2, and the other (SB) has the

complementary pattern, x1� x2. This reversed configuration

is intuitively plausible given their opposing relationship. The

two attractors can coexist within the same environmental

conditions, and thus, the circuit is said to be ‘‘bistable.’’ Which

state a given cell or circuit ‘‘occupies’’ in equilibrium depends

solely on the history: the position of the state the cell started

from, i.e., the initial state S(t¼ 0). The set of initial states that
[x1(t), x2(t)] is a position in the xy state space, defined by the

of S. This conceptualization gives S position-like properties,

as the movement of S(t). The mathematical description with

w the constraints imposed by the regulatory interactions

. Concretely, they compute the ‘‘arrows’’ (vectors) emanating

particular state S has to move (‘‘flow’’) in the next time unit

icate rate and direction by which S at a certain state space

tails see also refs.(13,74,81)). Under normal circumstances a

the points S that do not experience any driving force exerted

onstraints. Accordingly, these points do not have outward-

r fixed-points) of the circuit, labeled here as SA, SB and SC in

te space experience a force that is represented by the vector.

coherent flow emerges, revealing two types of steady-states

’ These two points, SA¼ [x1
A, x2

A] and SB¼ [x1
B, x2

B], are the
B), introduced by externally imposed changes of x1 or x2 and

ill return from S0 back to the attractor state SA (or SB) as long

he two attractors and their basins is the so called separatrix

etwork interactions and hence, is a stationary (steady) state,

nary state, but is not stable: the circuit stays at that position

ot to exert any net force. In this symmetric example this is the

n x1¼ x2 will trigger the circuit to move to either attractor, SA

C is called an unstable (‘‘repelling’’) steady state.
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Figure 2. Dynamics of the 2-gene regulatory circuit. Qualitative explanation of basic principles of dynamical systems for the bistable (A–C) and

tristable (D–F) circuits. A, D. Circuit architecture for two mutually inhibitory genes. B, E. State space (x1–x2)-plane with typical vector field (flow

field). Each point in the plane is a gene expression configuration of the circuit (x1, x2). The arrows (vectors) indicate how the states S¼ (x1, x2),

arbitrarily positioned on a grid to cover the state space, move within a tiny time unit. In B, the states SA and SB (red dots) are stable steady states

(attractors); SC (empty circle) is an unstable steady state. In E, the central state SC is also an attractor. Dashed red line represents the separatrix,

dividing the state space into the basins of attraction. C, F. Associated (quasi) potential landscape.(96) (For the computation of the landscape in F a

circuit with different parameters than that underlying the vector field in E. was used to optimize 3D visualisation). Bottom: simplified schematic

representations, obtained from cross section along the dashed line � ------ �. G. Waddington’s ‘‘epigenetic landscape’’ (from ref.(70)) a qualitative

metaphor that predates the formal quasi-potential landscape of gene networks. H. Examples of gene regulatory circuits with the same

architecture which control binary decisions at branch points of cell differentiation in multi-potent cells, including CMP,(74) embryonic stem cells,(75)

and OAP.(97) The dashed arrows indicate that the positive feedback loops are indirect. Note that these circuits are embedded in larger regulatory

networks.
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end up in the same attractor forms the basin of attraction of

that attractor. Attractor states are robust, ‘‘self-stabilizing,’’

distinct states. Once an attractor is reached, the associated

expression pattern is maintained even after the original

stimulus that placed it in the corresponding basin has

disappeared. Thus, bistability is the most elementary

mechanism for memory in nature. The basins are separated

by regions of unstable states, which constitute the epigenetic

barriers. (See Box 2 for more details.) Small perturbations of

attractor states (imposed temporary changes in x1 or x2) are

‘‘buffered’’ by the basins of attraction, that is, the perturbed

circuit state S’ returns to the attractor state. In contrast, larger

perturbations above a distinct threshold will ‘‘kick’’ a state out

of the basin and into the other attractor. (Fig. 3B illustrates the

idea of attractor transitions).
552
Cell types as high-dimensional attractors

Given the dynamical properties of attractors, it is now natural

to equate each of the two stable attractor states SA and SB

with an observable, stable gene expression pattern, and

hence, with a cell fate, a lineage or a cell type. That cell types

correspond to attractor states was historically a central idea,

unfortunately forgotten as molecular biology turned its

attention to explaining cell fate regulation in terms of

molecular markers and linear pathways (Fig. 1A). It is

important to note the fundamental ontological difference

between arrows in the typical pathway charts that symbolize a

molecular causation and the arrows in state space that

represent a movement of S (a trajectory or path) driven by

network dynamics (Fig. 1C).
BioEssays 31:546–560, � 2009 Wiley Periodicals, Inc.



Figure 3. Schematic overview integrating the key concepts discussed in the text. A. A hypothetical epigenetic landscape to illustrate the

concepts behind the hierarchy of cell type diversification during development. As in Fig. 2C, 2F, the horizontal axis is a schematic, projected state

space-coordinate; the elevation (quasi-potential) represents the relative instability of individual states at each state space location. Each cell,

defined by a position in state space is represented by a green ball. The landscape integrates two basic ideas: (1) metastable local attractors with

the associated promiscuous gene expression pattern of the multipotent progenitor state, and (2) local fluctuations within attractors as the basis for

cellular heterogeneity, which is manifest as a ‘cloud’ of states (balls). The ‘‘outlier cells’’ near the rim of the attractor basin are primed to

differentiate. Attractor transitions to lower valleys correspond to fate commitment to more differentiated and lineage-restricted cells (dashed

arrows). B. Illustration of the co-existence of rarity and robustness in reprogramming the pluripotent state (‘‘jumping back’’). Note the

‘‘subattractors’’ (‘‘wash-board potentials’’) as manifestation of the ruggedness of the epigenetic landscape which imposes intermediate states

that slow down the reprogramming events.
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Max Delbrück first proposed in 1948 that bistability of

biochemical networks may explain differentiation into dis-

cretely distinct cell states.(55) Soon after Monod and Jacob

discovered gene regulation in the 1960s, they proposed that a

circuit with the same architecture as in Fig. 2A(56) explains

differentiation. Thomas suggested that at least a positive

feedback loop (or, equivalently, a composite regulatory

feedback loop with an even number of inhibitory interactions)
BioEssays 31:546–560, � 2009 Wiley Periodicals, Inc.
is necessary for differentiation into multiple stationary

states.(57) Bistability is a special (the simplest) case of multi-

stability, an elementary concept in the theory of dynamical

systems: In a network with a larger number of genes N, not

two but multiple attractors can arise given the appropriate

architecture of the gene regulatory network. In the late 1960s,

Stuart Kauffman proposed that each one of the hundreds

of cell types in the body corresponds to one of the
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high-dimensional attractors that a large network of hundreds

to thousands of genes can produce (if they are wired so as to

avoid ‘chaotic dynamics’).(12,18)

This picture is closer to reality, since a network state is

defined by an entire genome-wide profile S¼ [x1, x2, . . ., xN],

where N can be in the thousands, so that the state space has

N dimensions. After all, the small ‘‘local circuits’’ studied in

various mathematical models(58–60) must be embedded in a

genome-spanning gene network (Box 1). Nevertheless, the

success of simple models in predicting cell fate behavior

suggests that the core regulatory element controlling the

decision between two lineages may consist of rather simple

interlinked circuits, similar to the one discussed here(58–61)

and that individual circuits may act quite independently in a

particular cell type as the master control system that

determines much of the dynamics of the genome-scale

network. For instance, the regulatory core circuit that controls

pluripotency in embryonic stem cells comprises the TFs Oct4,

Sox2, Nanog, Klf4, etc.(62–65) and circuit models comprising

few of these TFs qualitatively predict cell fate behavior

well.(59,61,66)

The idea that a cell type-specific gene expression profile

may be a high-dimensional attractor state, as first proposed

by Kauffman,(18) has now found experimental support.

Measurements of temporal evolution of transcriptomes during

neutrophil differentiation and in a hematopoietic cell line have

shown the convergence of high-dimensional trajectories

(across> 3000 genes)(67) or the return of noise-induced

deviations of the transcriptome from the border of the basin of

attraction back to the attractor state.(68) Both are dynamical

hallmarks of attractor states.

In summary, attractors of regulatory networks exhibit the

natural properties of cell types:(69) they are discretely distinct

entities (a network can produce a ‘‘countable’’ number of

attractors) and they are self-stabilizing, that is, robust to small

perturbations; yet they allow ‘‘all-or-nothing’’ transitions to

other attractors given sufficiently high perturbations. This

mental picture of high-dimensional attractors explains the

stunning reliability with which cells establish a particular,

genome-wide gene expression profile of thousands of

genes—without the help of our biological Maxwell’s demon.

The ensemble of trajectories in the state space as depicted

in Fig. 2B, E intuitively suggests a flow-like behavior. Indeed,

the circuit dynamics can be further formalized as a kind of

quasi-potential landscape that captures the global dynamics,

as explained in Box 2. In this landscape picture the attractors

behave like the lowest points in ‘‘potential wells’’ or valleys.

They are separated by hills that correspond to unstable

states. The latter then represent the epigenetic barriers. The

state space and its landscape structure may be what Conrad

Waddington, unaware of ‘‘gene networks’’ in the modern

sense, had in mind when he proposed his ‘‘epigenetic

landscape’’ in the 1940s to explain cell fate determination
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(Fig. 2G). Unfortunately, since the term ‘‘epigenetic’’ is used in

molecular biology to describe covalent modifications—which

does not do justice to Waddington’s original ideas(70)—his

landscape is continuously being (mis)interpreted in a loosely

metaphoric manner.(71,72)
Reprogramming as transitions between
attractors

It now appears that the simple bistable circuit consisting of

TFs, X1 and X2, which inhibit each other, is a general motif of

network architecture that controls binary branch points

between two mutually exclusive cell lineages produced by

the a common multipotent progenitor cell. For instance,

differentiation of the common myeloid progenitor (CMP) into

two lineages, the megakaryocyte-erythroid progenitors (MEP,

or ‘‘erythroid’’ lineage) and the granulocyte-monocyte pro-

genitors (GMP, or ‘‘myeloid’’ lineage), is controlled by two

mutually inhibiting fate-determining transcription factors:

X1¼GATA1 which promotes MEP commitment and

X2¼PU.1 which promotes GMP commitment.(73) Accord-

ingly, the expression patterns in these two lineages are as

predicted by the state attractors: SMEP [x1� x2]¼ [GATA1high,

PU.1low] for MEP and SGMP [x1� x2]¼ [GATA1low, PU.1high]

for GMP,(74) see Fig. 1E. Similarly, the dichotomy between

neutrophils and monocytes is also controlled by two mutually

inhibiting TFs, Egr2 and Gfi1.(60) Many other pairs of mutually

regulating, fate determining TFs have been described, mostly

in the hematopoietic system(73) but also in early embryonic

development.(75)

The bistable system and the state space idea now provide

a conceptual framework for explaining the intuitively antici-

pated transdifferentiation between neighboring lines by

overexpression of one of the fate-determining factors.(76)

We can now equate ‘‘reprogramming’’ with an attractor

transition. Then, given the dynamical properties of an

attractor as a valley in a landscape, we can derive several

key properties for reprogramming:
(i) S
ome sloppiness in manipulating the gene expression

levels of X1 and X2 is tolerated: As long as alteration of

either X1 or X2, or both, lands the circuit state S in the

basin of the target attractor, the ‘correct’ expression

profile will ‘‘self-organize’’ as S is attracted to the attractor.
(ii) T
he attractors and the memory property predict that once

the transition is made, the external overexpression is no

longer needed to maintain the new state.
(iii) E
ven in this simple model it can be formally shown that

perturbation of a combination of genes, rather than a

single gene, can synergistically enhance the transition

efficiency. For instance, traveling from SA to SB along the

diagonal of the state space (Fig. 2B, C) requires the
BioEssays 31:546–560, � 2009 Wiley Periodicals, Inc.
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manipulation of both X1 and X2. This trajectory corre-

sponds roughly to the shortest path going through the

lowest barrier (‘‘notch’’). [However, note that the land-

scape is not a true ‘‘energy’’ landscape – see bottom of

Box 3]
Because of the above characteristics, reprogramming in

general is more likely to be successful than we may expect in

view of the highly specific configuration of gene expression

that defines the target state. Later we will see why despite this

robustness, a reprogramming event is still a rare event.
Multipotent state: an attractor with
balanced expression patterns

If attractors provide a model for the stable gene expression

profiles of committed cell fates, what about the uncommitted

multipotent stem cells, their ‘‘ground state’’ nature, and what

about reprogramming back to the ES-like state? It has long
om state space to the epigenetic landscape

e flow-like vector field (Fig. 2B, 2E) gives rise to the intuition of

n construct a ‘‘quasi potential energy landscape’’ in which the

S), which assigns each point S the elevation or ‘‘potential’

addington’s metaphoric ‘‘epigenetic landscape (Fig. 2G) and w

e stability-seeking movement of S ‘‘downwards.’’ Then, in

presented by the lowest points in the ‘‘potential wells’’ or by ‘‘va

unstable steady states are represented by the ‘‘hill tops’’ (in a

cture of the ‘‘epigenetic barriers’’.

is, however, important to note that the elevation V does not c

oposed for systems like protein folding,(85) because the syste

ctor fields in Fig. 2B and 2E) are not integrable. Nevertheless,

eir local stability (response to minimal perturbations), land

uilibrium systems (such as gene regulatory networks) by pro

lleys.(79)

ithout going into the details(79,96) the relative ‘‘depth’’ of attract

ndscape, are computed as follows. The central notion needed i

mbers of molecules in the cell, so that random, short-time-s

sults in random fluctuations of the expression level of a gene,

tire cell populations. The random fluctuations of xi in time tran

ich will describe a random walk like the Brownian motion of a d

d accordingly can be statistically described: There is a pr

quilibrium) state is reached. Thus, a stable attractor state is a ‘‘

stable states are less likely (‘‘improbable’’) to be occupied, an

e system we find, by numerical simulation, a probability distr

obability P. To allow the intuitive equivalence ‘‘low energy (stab

S) for each state S can then be used to plot an elevation (’’quas

r formal reasons,V is calculated by taking the negative logarith

at the network is a so-called non-equilibrium system and the dri

rection’’) in terms of the V landscape.

ssays 31:546–560, � 2009 Wiley Periodicals, Inc.
been proposed that the state of indeterminacy in pluri- or

multipotent cells is characterized by a ‘‘promiscuous gene

expression’’ of opposing fate-determining factors.(77,78) In the

case of the afore-discussed GATA1 – PU.1 circuit, the CMP

which faces the binary decision to commit to either MEP

(triggered by high GATA1), or GMP (triggered by high PU.1),

indeed expresses both GATA1 and PU.1 at equal but low

levels(74) (Fig. 1E).

Thus, the multi-potent state is literally a balanced,

undecided state: its expression pattern, [x1� x2] is poised

at the center between the two attractors. But this would

suggest that multipotency is an unstable steady state (SC) or

is elsewhere on the separatrix—a delicate balance on a

mountain crest, prone to fall toward the attractors on either

side followed by the slightest disturbance (Fig. 2B, C). While

multipotent stem or progenitor cells indeed have a high tendency

to spontaneously differentiate, they are to some extent stable

entities that can be isolated and maintained in culture over

extended periods of time. What stabilizes the undecided,

multipotent progenitor or even the pluripotent stem cell?
a physical flow toward lowest points (attractors). In fact, one

3rd dimension above the state space plane is the elevation

’ V. Such a landscape would be the formal equivalent of

ould afford the intuition of a kind of gravity that would drive

this quasi-potential landscape, stable attractor states are

lleys,’’ which themselves are separated by hills. Accordingly,

t least one direction).(74,96) The hills now provide an intuitive

onstitute a true ‘‘potential energy’’ in the classical sense as

m equations for the regulatory networks (which underlie the

unlike the traditional analysis of steady-states that examines

scapes help conceptualize the global dynamics of non-

viding information on the ‘‘relative weights’’ of the various

ors and ‘‘height’’ of hills, that is, the elevation contours of the

s that gene expression is ‘‘noisy,’’(100) due, in part to the small

cale local molecular events are not averaged out.(84) This

xi(t) around a mean – the value measured biochemically in

slate into the ‘‘wiggling’’ of the trajectory of S in state space,

iffusing particle. Hence, S literally diffuses in the state space,

obability of finding S at a given position when a steady

probable’’ state, analogous to a ‘‘low energy state,’’ whereas

d correspond to a ‘‘high energy state.’’ At the steady-state of

ibution over the state space P(S) that assigns to each S a

ility)¼ high probability’’ an inverse function of the probability

i-potential’’) V(S) over each point S to generate a landscape.

m of the probability: V(S)¼�ln(P(S)). It is important to recall

ving force ofS is not simply related to the gradient (‘‘down-hill
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An answer may be offered by the finding that mutually

inhibitory fate determining TFs, including GATA1 and PU.1,

often also stimulate their own expression(74) (see other

examples in Fig. 2H). Adding this self-activation (positive

feedback) loop to the bistable circuit architecture (see Fig. 2A

vs. 2D) changes the dynamics in a way that is difficult to

comprehend intuitively. The analysis of the associated

dynamical model,(74) however, shows that the presence of

self-activation converts the central unstable steady state SC

that displays ‘‘promiscuous gene expression’’ into a locally

stable attractor state!

Thus, the state of indeterminacy with a balanced

expression pattern [x1� x2] is itself an attractor, located

between the two ‘‘asymmetric attractors’’ with [x1� x2] and

[x1� x2] as shown schematically in Fig. 2E, F. This behavior

manifests the typical dynamics of such circuits, which means

that it is produced by a wide range of parameters in the

underlying equations. Importantly, it explains why a balanced,

pluri- or multi-potent state is to some extent self-stabilizing

and why reprogramming pluripotency by rather crude over-

expression of genes is relatively robust. As a local attractor in

a potential landscape, it thus has the property of a ‘‘ground

state’’ that is self-maintaining.(11) It is nevertheless globally

situated at a ‘‘high altitude,’’ which affords the state a strong

urge to ‘‘differentiate away’’ and populate all other attractors

situated at a lower ‘‘altitude.’’(79)
Cell fate decision: leaving the ground
state

What happens during fate decisions, for instance, when a

growth factor, such as Epo triggers differentiation of the

multipotent CMP toward the erythroid lineage (MEP)? A

simple mechanistic model postulates that Epo tilts the GATA-

PU.1 balance, since Epo signaling induces GATA1 expression

and activation.(80) This constitutes a perturbation of the circuit,

which kicks it out of the SC attractor into the basin of the

SMEP¼ [GATA1high, PU.1low] attractor. This example may help

define the role of signaling pathways in development: Signal

transduction may have evolved to coordinate the ‘‘combina-

torially unlikely’’ set of changes in gene expression in the state

vector S¼ [x1, x2, . . .] that is most efficient in overcoming an

epigenetic barrier to accomplish a transition between high-

dimensional attractors.

Reality, however, may again be more complex. In brief,

there is evidence suggesting that differentiation signals might

also cause a change in the interaction parameters of the

circuit (strength of the interactions), such that the central

progenitor attractor SC is destabilized, that is, converted from

a local valley to a hilltop state as seen in the pure bistable

system(74) (Fig. 2A–C). An event that qualitatively alters the

landscape structure due to changes in network parameters is
556
called a bifurcation.(74,81) Once the SC attractor is destabilized

and the ‘‘ground state’’ character is gone (transforming the

landscape from Fig. 2F to 2C), any small, temporal random

asymmetry of the balanced configuration [x1� x2] caused by

gene expression noise will randomly push the cell down to

either one of the two attractors SA and SB representing the

prospective cell fates. This is in line with the observation that

when multipotent progenitor cells or embryonic stem cells are

placed in culture conditions unfavorable to the stem cell state,

they will spontaneously and stochastically differentiate into

multiple lineages without the need of an ‘‘instructive’’ signal to

convey the lineage-specific gene expression pattern.(82,83)

Thus, let us briefly consider the stochastic aspect.
Stochasticity: pluripotency as cloud in
state space

The dynamics discussed in the models so far is purely

deterministic: a state S is a ‘sharp’, precise point in state

space, a trajectory is a crisp line. But gene expression is

‘‘noisy,’’(84) i.e., the expression level fluctuates randomly in an

individual cell (see Box 3). Thus, a snapshot of a clonal

population of nominally identical cells that are supposed to be

in the same cellular state will not map onto a single point in

state space, but will appear as a cloud of points, each

representing the state of an individual cell (Fig. 3).(68)

Because of the fluctuations, an individual cell in an attractor

will randomly wiggle around in the basin of attraction,

bouncing from one edge of the basin to another but on

average remaining around the attractor state.

This was demonstrated using a hematopoietic cell line that

possesses the multi-potency of the CMP stage. When cells

were isolated by FACS from the border of a cloud, i.e., from the

‘‘tail’’ of the population histogram with respect to the

expression of PU.1 and GATA1, these noise-perturbed,

‘‘outlier cells,’’ which exhibit unbalanced PU.1, GATA1 levels

will return, over several days, back to the center of the

distribution with respect to these genes, hence, re-establish-

ing the [GATA1 � PU.1] balanced state. This relaxation of

‘‘outliers’’ back to the undecided CMP corroborates the idea

that a multipotent/pluripotent state is an attractor or a ‘‘ground

state.’’ In the case of ES cells, this would correspond to a

balanced attractor maintained by the gene circuit around

Oct4, Sox2, Nanog and other proteins.(59)

Importantly, the relaxation back to the ground state was

unexpectedly slow (over a week)(68) and mathematical

models of its kinetics suggested that the attractor is not a

simple potential well surrounded by smoothly ascending

slopes, but rather embedded in a rugged epigenetic land-

scape with multiple sub-attractors.(85) The presence of the

latter leads to potential wells with a ‘‘wash-board’’ surface, as

shown in Fig. 3B, so that individual outlier cells persist for
BioEssays 31:546–560, � 2009 Wiley Periodicals, Inc.
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extended times near attractor borders. At the population level

in equilibrium, gene expression noise maintains, via local

noise-induced state transitions, an equilibrium distribution of

occupancy of theses sub-states by individual cells. The

population then appears as the familiar stable histograms of

flow cytometry measurements for a protein X. These are

population snapshots of all the present sub-states within an

attractor projected to one state space axis, X. Rugged

landscapes with sub-attractors are typical for complex high-

dimensional dynamical systems.(18)

The cloud in the stem cell attractor offers a model for

uniting the stochastic nature of cell fate commitment with the

role of deterministic, instructive signals(86): the cells that at a

given time happen to be near the rim of the basin are most

responsive to differentiating signals that kick them out of the

stem cell attractor or destabilize the latter.(68)

Whether the well-documented noisy heterogeneity of

expression levels xi of master TFs, such as Oct4, Nanog,

Cdx2 in individual ES cells(87,88) reflects a flat attractor basin

that is particularly wide in pluri/multipotent cells, allowing for

large fluctuations, as opposed to narrowes attractors of

terminally differentiated cells, remains to be seen. It has been

suggested that some signaling pathways may actually control

noise, and hence, the stability of the pluripotency ground

state, by regulating the dispersion of the cells in it.(89)

In summary, in the dynamics perspective, individual cells in

a clonal population slowly bounce back and forth within the

attractor basin and, since state space position translates into

gene expression profile, they continuously ‘‘scan’’ a broad

region of the state space for gene expression patterns that

may prime them for a particular prospective fate while waiting

for the commensurate external differentiation signal. Thus,

multi- or pluripotency may merely be a manifestation of the

fact that an apparently uniform clonal population of stem cells

is actually a heterogeneous mixture of ‘‘microstates,’’ each

primed for a distinct fate, but transitioning into each other in a

dynamic equilibrium (within the attractor basin) when no fate-

committing external cue is present. This concept establishes

a formal basis for the metaphor of ‘‘multi-lineage prim-

ing.’’(77,78)
Reprogramming pluripotency:
robust yet rare

Since the pluripotent state is an attractor state with a rather

large basin of attraction, it is robust—a ground state.

Inaccuracies in gene expression levels are tolerated. This

property facilitates the reprogramming of a cell toward

pluripotency by increasing the target size (summarized in

Fig. 3). But we now also can explain why reprogramming

events are rare despite the robustness of the target cell type.

More generally, attempts to direct a stem cell to differentiate
BioEssays 31:546–560, � 2009 Wiley Periodicals, Inc.
into any particular lineage or to reprogram a committed cell to

another lineage are notoriously inefficient. The desired

transition events are rare and slow.

We propose that the main culprit for this inefficiency is the

ruggedness of the attractor landscape. Cells are dispersed

and occupy multiple metastable sub-attractors within a

‘‘wash-board potential’’ attractor—the basis for heterogeneity

of cell populations. The large number of such microstates

within any cell population receiving the (re)programming

perturbation also disperses the response profiles: only a small

fraction of the cells in the population, namely those whose

fluctuating microstate map into a gene expression pattern that

fulfils some particular priming requirement, may actually be

responsive to the nature of the reprogramming signals

(Fig. 3B). Furthermore, the sub-attractor states in the

‘‘potential wall’’ represent distinct metastable intermediate

states that need to be traversed when moving between

attractors. Such intermediate stages, often manifest in non-

observed state space dimensions of a higher-dimensional

trajectory, have been characterized during DMSO-induced

neutrophil differentiation(90) and reprogramming of fibroblasts

to iPS cells.(91,92) In addition, the numerical computation of the

landscape structure (Box 3) expectedly suggests a high

elevation for the pluripotency attractor. This implies that re-

establishing pluripotency is an ‘‘uphill battle’’(79) against the

global slope in the landscape, which accounts for the arrow of

time of development.
Conclusion

An epistemological habit in molecular biology is to explain a

biological observable, such as pluripotency, by reducing it to

the existence of a molecular entity, such as a gene, protein or

pathway, as lucidly manifest in the long quest for THE

‘‘stemness gene.’’(93) Here, we have attempted to encourage

a different type of reasoning, namely, one based on the

fundamental, formalizable principles of a dynamical system

as epitomized by a gene regulatory network. Then ‘‘stem-

ness’’ is an emergent dynamical state rather than the direct

consequence of the activity of a particular ‘‘stemness’’ gene.

We also explained how, in such a formal conceptual

framework, apparently surprising observations, including

the possibility of reprogramming pluripotency and its ‘‘ground

state’’ character, are naturally explained, without hand-waving

or ad hoc metaphors. In doing so, we covered these key

points:
1. G
ene-gene interactions within the GRN constrain the

dynamics of the network state as a whole. The constraints

channel the movement of the network state in the state

space, away from unstable expression patterns toward

stable steady states or attractor states. This behavior
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can formally be represented by a quasi-potential land-

scape which may have a fundamental correspondence

to Waddington’s epigenetic landscape.
2. I
n this landscape, an attractor state is represented by the

bottom of a valley (‘‘potential’’-well) and the associated

gene expression pattern is ‘‘self-stabilizing.’’ It resists

(minor) perturbations in expression levels of the genes.

A central idea is that attractors represent cell types. On the

other hand, hilltops and crests are unstable states. They

separate the attractors, and hence, represent the ‘‘epige-

netic barriers’’ between the discrete cell phenotypes.
3. R
eprogramming is not the de novo gene-by-gene instruc-

tion to build the expression pattern of a desired phenotype,

but the activation of a pre-existing coherent gene expres-

sion ‘‘program’’ by stimulating a transition into the attractor

that encodes such a program. The challenge is to find a

walkable path that connects the attractors (see 6.).
4. T
he multi- or pluri-potent states are also attractors; but

they are located on hills between the valleys that represent

their prospective fates, the more differentiated cell types.

Such ‘‘high-altitude attractors’’ are metastable, akin to a

mountain lake, because, on the one hand, they are locally

self-stabilizing, giving rise to the ‘‘ground state’’ property of

stem cells, but on the other hand, upon perturbations the

network state will ‘‘flow down’’ the valleys to the much lower

attractors of differentiated cells. Located centrally in the

state space, stem cell attractors naturally exhibit ‘‘promis-

cuous gene expression’’ and have access to the attractors

of various lineages.
5. T
he heterogeneity of clonal populations of cells reflects the

slow, random fluctuations of gene expression patterns in

individual cells that appear to hop between subattractors in

the rugged epigenetic landscape. These coherent fluctua-

tions of entire expression patterns allow a stem cell to

‘‘scan’’ the state space and to temporally approach to the

pattern of a prospective lineage. Such transient excursions

may constitute the reversible ‘‘priming’’ of stem cells.
6. S
ince the stability of cell type-specific gene expression

patterns emerges from the dynamics of reversible regula-

tory interactions, no transition between any two such

expression patterns is in principle impossible. However,

some paths between attractors are easier to walk and are

used in normal development, whereas others are rarely or

never used naturally. One should hence neither be sur-

prised by the very possibility of reprogramming any cell

type nor be disturbed by the discovery of new, unorthodox

inter-cell developmental paths under experimental condi-

tions.(94)
7. F
inally, for pragmatic purposes, knowing the ‘‘epigenetic

landscape’’ inferred from the GRN architecture as well as

the spread of the ‘‘clouds’’ of cells within attractors may one

day pave the way for predicting the epigenetic barriers and

designing reprogramming strategies along the best paths.
8

This possibility will likely focus our efforts in generating

desired cell types on the transitions between related cell

lineages(‘‘neighboringvalleys’’), insteadoftakingthedetour

via the pluripotent iPS (‘‘the summit’’) as demonstrated by

the recent generation of insulin-secreting pancreatic cells

from closely related exocrine cells.(10) Moreover, the self-

stabilizingandmemorypropertiesofattractorsallowsfor the

possibility of using transient perturbations,(23) perhaps with

small molecule drugs, to achieve lasting reprogramming,

thus obviating the need for viral vectors. Drugs that enlarge

the attractor basins and thus promote the ground-state

character of the target cell state(11) may be used to increase

reprogramming efficiency.
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