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Abstract
We sought to find clinical subtypes of posttraumatic stress disorder (PTSD) in veterans 6–10 years post-trauma
exposure based on current symptom assessments and to examine whether blood biomarkers could differentiate
them. Samples were males deployed to Iraq and Afghanistan studied by the PTSD Systems Biology Consortium: a
discovery sample of 74 PTSD cases and 71 healthy controls (HC), and a validation sample of 26 PTSD cases and 36 HC.
A machine learning method, random forests (RF), in conjunction with a clustering method, partitioning around
medoids, were used to identify subtypes derived from 16 self-report and clinician assessment scales, including the
clinician-administered PTSD scale for DSM-IV (CAPS). Two subtypes were identified, designated S1 and S2, differing on
mean current CAPS total scores: S2= 75.6 (sd 14.6) and S1= 54.3 (sd 6.6). S2 had greater symptom severity scores than
both S1 and HC on all scale items. The mean first principal component score derived from clinical summary scales was
three times higher in S2 than in S1. Distinct RFs were grown to classify S1 and S2 vs. HCs and vs. each other on multi-
omic blood markers feature classes of current medical comorbidities, neurocognitive functioning, demographics, pre-
military trauma, and psychiatric history. Among these classes, in each RF intergroup comparison of S1, S2, and HC,
multi-omic biomarkers yielded the highest AUC-ROCs (0.819–0.922); other classes added little to further discrimination
of the subtypes. Among the top five biomarkers in each of these RFs were methylation, micro RNA, and lactate
markers, suggesting their biological role in symptom severity.

Introduction
Distinct subtypes of posttraumatic stress disorder

(PTSD), a heterogeneous disorder, have been sought to
isolate differentiating clinical features and their biological
mechanisms so that recommendations can be made for
more precise treatments and prognostic indicators can be
identified. A natural starting point for developing clinical

subtypes is derived from the four sets of symptom criteria
for PTSD defined in the diagnostic statistical manual
(DSM-5)1,2: intrusion, avoidance, negative alterations in
cognitions and mood, and alterations in arousal and
reactivity. Subtype suggestions have been made based on
externalization features3, and for a dissociative subtype
that includes depersonalization and derealization symp-
toms and delayed onset4,5. Other symptoms that com-
monly co-occur with PTSD, including anxiety and
depressive symptoms, have also been considered in the
search for PTSD subtypes6. Clusters of distinct clinical
symptoms are desirable for defining subtypes, but several
subtyping studies at best have led to subgroups

© The Author(s) 2021
OpenAccessThis article is licensedunder aCreativeCommonsAttribution 4.0 International License,whichpermits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changesweremade. The images or other third partymaterial in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to thematerial. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Correspondence: Carole E. Siegel (Carole.Siegel@nyulangone.org)
1Center for Alcohol Use Disorder and PTSD, Department of Psychiatry, New
York University Grossman School of Medicine, New York, NY, USA
2Division of Biostatistics, Department of Population Health, New York
University Grossman School of Medicine, New York, NY, USA
Full list of author information is available at the end of the article

12
34

56
78

90
()
:,;

12
34

56
78

90
()
:,;

1
2
3
4
5
6
7
8
9
0
()
:,;

12
34

56
78

90
()
:,;

http://orcid.org/0000-0002-7460-788X
http://orcid.org/0000-0002-7460-788X
http://orcid.org/0000-0002-7460-788X
http://orcid.org/0000-0002-7460-788X
http://orcid.org/0000-0002-7460-788X
http://orcid.org/0000-0003-1990-6788
http://orcid.org/0000-0003-1990-6788
http://orcid.org/0000-0003-1990-6788
http://orcid.org/0000-0003-1990-6788
http://orcid.org/0000-0003-1990-6788
http://orcid.org/0000-0003-3068-8662
http://orcid.org/0000-0003-3068-8662
http://orcid.org/0000-0003-3068-8662
http://orcid.org/0000-0003-3068-8662
http://orcid.org/0000-0003-3068-8662
http://orcid.org/0000-0003-0655-5042
http://orcid.org/0000-0003-0655-5042
http://orcid.org/0000-0003-0655-5042
http://orcid.org/0000-0003-0655-5042
http://orcid.org/0000-0003-0655-5042
http://orcid.org/0000-0002-5158-1103
http://orcid.org/0000-0002-5158-1103
http://orcid.org/0000-0002-5158-1103
http://orcid.org/0000-0002-5158-1103
http://orcid.org/0000-0002-5158-1103
http://orcid.org/0000-0002-2899-0216
http://orcid.org/0000-0002-2899-0216
http://orcid.org/0000-0002-2899-0216
http://orcid.org/0000-0002-2899-0216
http://orcid.org/0000-0002-2899-0216
http://creativecommons.org/licenses/by/4.0/
mailto:Carole.Siegel@nyulangone.org


distinguished on symptom severity and comorbidities7.
While biological correlates of PTSD including multi-omic
blood biomarkers8, cortisol9, neurocognitive markers10,
neuroimaging markers11,12, and voice markers13 have
been studied, to date only a few studies have shown their
value for characterizing subtypes. Among these, neuro-
cognitive functioning has been shown to differentiate
clinically defined severity subtypes6. The dissociative
subtype of PTSD is associated with altered resting-state
functional connectivity of the amygdala11 and altered
subcortical white matter connectivity12. Zhang et al.14

demonstrated that electroencephalography (EEG) func-
tional connectivity defined subtypes for PTSD and major
depressive disorder (MDD) predict differential treatment
response when comparing psychotherapy to placebo for
PTSD, and antidepressant medication versus placebo for
MDD. Notably, epigenetic markers have been used to
define PTSD subtypes, which are then shown to differ on
clinical characteristics15, a reversal of the usual approach.
Analytic methods used to identify subtypes have evolved

from statistical clustering approaches to modern methods
of machine learning that are essentially unsupervised
searches for patterns involving between persons’ distance
measures. The most common statistical method used in
prior studies of the heterogeneity in PTSD symptom
presentations is latent profile analysis (LPA)5,6,16,17 in
which the probability of being in a latent class is modeled.
The probability is assumed to be represented by a
weighted mixture of normally distributed random vari-
ables in which each represents a subtype and the weights
are the probabilities of subtype membership for a given
feature profile. Normality assumptions, difficulty in
parameter estimation, and limits on the number of vari-
ables that can be considered reduce the usefulness of this
statistical approach. In our study, we used the machine
learning method of random forests (RF)18 to obtain a
distance measure between subjects in conjunction with an
unsupervised statistical clustering method, partitioning
around medoids (PAM)19, to identify subtypes. This is a
novel approach that quantifies the distance between
subjects as small if they frequently fall in the same
terminal nodes of the RF trees grown to classify the dis-
order versus healthy controls (HC). RF are also used in
our report to identify biological correlates of the subtypes.
Several advantages accrue to the use of RF most germane
here is the ability to include large sets of both binary and
continuous features even with modest sample sizes, and
to provide a distance metric for clustering that is related
to the purpose of the clusters. Further, RF are developed
with internal validation procedures achieved through out-
of-bag sampling20 in which numerous repetitions of ran-
dom bootstrap samples used in training models are
evaluated on the left-out samples to obtain robust esti-
mates of the AUC of the RF ROC and its modeling errors.

Sophisticated variable reduction methods are available
such as “shaving”21 based on measures of a feature’s
importance to the classifier22 and enable a reduction in
the number of features considered.
The goal of the current study is to discover PTSD

subtypes that are homogeneous in clinical symptoms and
to determine whether multi-omic blood biomarkers can
differentiate them. To identify subtypes, we considered a
large array of clinical symptom items captured in 16
validated self-report and clinical assessment scales (see
Fig. 1 and Table S1) that are commonly used in practice to
assess PTSD and its comorbidities in clinical research
settings. The distance between subjects is captured by the
proximity matrix of an RF grown to classify cases vs HC
with these clinical symptoms. To establish the compara-
tive importance of multi-omic blood biomarkers in con-
trast with other candidate predictor classes of subtypes,
we also examined whether five additional feature classes
improved classification. The novelty of our work lies in
the large number of clinical items considered in subtyp-
ing, the use of a proximity matrix from an RF in a clus-
tering algorithm to identify the symptom severity
subtypes, and the separate validation of the subtypes with
a large class of multi-omic markers that previously have
been demonstrated by our group to differentiate PTSD
from HC8.
While a best-practice procedure for the external vali-

dation of subtypes has not yet been described in the
psychometric or statistical literature, the logic and flow of
the present work have been informed by the criteria
described by Dalenberg et al.23. These authors propose
that to be useful subtypes must be (1) clinically relevant,
(2) reliably measured, and (3) have different biological
mechanisms. We address each of these criteria as follows:
(1) clinical relevance is attested to by the intuitive face
validity of the identified clusters, (2) reliable measurement
by the use of only items from reliable and well-validated
assessment scales as defining features, and (3) the differ-
ent biological mechanisms of subtypes shown by the
ability of a parsimonious set of biomarkers to accurately
classify subjects into the clinical subtypes.

Methods
Background
The discovery and validation samples utilized for sub-

typing are male Iraq and Afghanistan veterans, a group
documented to have an increased risk for PTSD. The
lifetime prevalence of PTSD in US veterans of the Viet-
namWar and subsequent conflicts, including the Iraq and
Afghanistan Wars, is estimated to be between 10.1% and
30.9%24–26. We studied participants from the PTSD sys-
tem biology consortium (SBC)8, a collaboration of the US
Army and multiple academic centers enrolling subjects,
identifying biological markers, and advancing diagnostics
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Panel 1

Panel 2

Fig. 1 Flow chart of analytic steps and specific procedures. Panel 1: Flow chart of analytic steps. Panel 2: Specific procedures.
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for high throughput clinical screening to identify military
service-related PTSD. Comprehensive biological, clinical,
and neurocognitive data on Iraq and Afghanistan male
veterans exposed to military trauma were assessed 6–10
years post-deployment. Participants were evaluated with
the clinician-administered PTSD scale for DSM-IV
(CAPS)1 to determine if they met diagnostic criteria, the
structured clinical interview for DSM–IV (SCID)27 to
assess other psychiatric disorders, and the peritraumatic
dissociative experiences questionnaire28, a rater measure
of peritraumatic dissociation, self-report measures of
symptoms of PTSD and associated co-morbidities and
measures of neurocognitive functioning. Historical infor-
mation was collected on adverse childhood events and
pre-military trauma exposure. Blood was drawn yielding
over one million biomarkers including GWAS, DNA
methylation, miRNAs, metabolomics, proteomics, small
molecules, endocrine markers, routine clinical lab panels,
and biometric/physiological markers. A mixed-method
approach of analytic and qualitative methods labeled
“wisdom of crowds” was used to reduce features into 343
unique candidates and include, as reported in our paper8,
COMBINER29, polygenic risk30,31, as well as traditional
SVM-RFE, RF, and other classification algorithms and
feature selection approach, including p-value, q-value, and
fold-change filtering. From the 343 features, 28 were
down-selected to be included in an RF classifier of pre-
viously deployed Iraq and Afghanistan veterans with
military service-related PTSD cases and HC. The PTSD
SBC sample was comprised of 166 male veterans, 83 who
met DSM-IV diagnostic criteria for a current diagnosis of
PTSD with a CAPS total score ≥40 (cases), and 83 who
were HC with a CAPS total score ≤20.

Discovery sample
Our discovery sample is a subset of the 166 male Iraq

and Afghanistan veterans drawn from our PTSD SBC
sample8. Besides the above-specified cut-points for CAPs
(inclusion criteria), other inclusion/exclusion criteria
included stable on medications in the prior month, no
prominent suicidality in the past three months, no psy-
chotic or bipolar disorders, no severe drug use disorder in
the past year, no open head injury and no major medical
illness or neurological conditions. The HC were selected
similar in age and ethnicity to the cases. The discovery
sample size was reduced from 166 to 145 because some
missing data could not be validly imputed; the resulting
discovery sample size for the current study was 74 cases
and 71 HC.

Validation sample
An independent validation sample of 62 male Iraq and

Afghanistan veterans, 26 PTSD cases and 36 HC, also
drawn from the earlier SBC study8 with similar

characteristics to the discovery sample, was used in the
current study to validate the RF that generated the dis-
tance metric for the clustering algorithm used to find
subtypes. Table 1 displays and compares background
characteristics of the discovery and validation samples.

Variables
Clinical items for finding subtypes of PTSD
Figure 1 and Table S1 list the 16 clinical scales whose

individual items were used to subtype cases and include
the CAPS, the PDEQ (a rater administered peritraumatic
dissociative experiences scale), and other commonly used
reliable and validated self-report symptom scales.

Feature classes for describing and classifying symptom
severity subtypes
The multi-omic blood biomarkers used for classifying

the identified clinical PTSD subtypes included GWAS,
DNA methylation, miRNAs, metabolomics, proteomics,
small molecules, endocrine, routine clinical labs, and
biometric/physiological markers. They are the same as
343 selected in our earlier study for classifying PTSD
cases and HC8, with the exception of GABR which was
removed because of extreme outlier values. The markers
are displayed in Table S2 and the number of markers
within a class in Table S3. Five additional feature classes
were included to determine their value in classification:
current medical co-morbidities, current neurocognitive
functioning, demographics, past psychiatric history, and
pre-military trauma. None of these feature classes were
incorporated into the primary search for clinical sub-
types as they are not easily collected in most clinical
settings (e.g., neurocognitive functioning), are not cur-
rent mental state assessments (e.g., past psychiatric his-
tory, pre-military trauma), or had category frequencies in
the sample that were non-representative of the target
population (e.g., demographics) used in forming the
subtypes but are considered for their ability to dis-
criminate the clinical subtypes. To further describe the
sample and derived subtypes, current SCID diagnoses of
alcohol and depressive psychiatric disorder were also
collected.

Data analytic methods
Figure 1 summarizes the analytic steps of the study

procedures.

Random forests
The machine learning method used was RF, an

ensemble method that combines independent decision
trees whose terminal nodes determine class member-
ship18. A final vote summarizes the individual tree
results generating a probability of membership in a class.
Each tree in an RF uses an internal validation method, a
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bootstrap method to select a sample from the dataset to
train the decision tree, and the remaining sample (out-
of-bag, OOB) to estimate the prediction error20. This
can be repeated multiple times as specified by the user.
Varying the probability threshold-level defining mem-
bership in a class generates a receiver operating curve
(ROC) and its area under the curve (AUC-ROC), which
is used to measure classification accuracy. The impor-
tance of each feature to the RF, the mean reduction in
Gini index22, is measured by the average reduction
obtained in the ambiguity of classification at a node
when it is used as a splitting variable in comparison to
ambiguity at the two descendant nodes of the split.
Shaving eliminates less important variables to classifi-
cation21. The least important features are first elimi-
nated, the RF rerun with the reduced set, its AUC
computed and the process continued until an optimal
AUC is selected as the largest value obtained with the
smallest set of unshaved variables. The programs were
run using R software32 and specialized source coding for

modeling and subsequent clustering have been placed in
GitHub33.

Clustering method to find subtypes based on clinical
symptoms
Subtypes of PTSD cases were obtained using the clus-

tering program, PAM19. The distance between subjects, a
required input to any clustering algorithm, was obtained
by a novel use of the proximity matrix of an RF to classify
cases versus HC. An RF parses subjects based on feature
splits ending in a terminal node in which persons have the
same pattern of feature interactions. The proximity
between two PTSD cases is defined based on the fre-
quency across the decision trees of the RF of being in the
same terminal node. For the PAM algorithm, the measure
of distance between cases was one minus the entries in the
resulting proximity matrix. Because the discovery and
validation sample sizes were not large, we restricted the
number of clusters to two, and label the resulting clusters
S1 and S2.

Table 1 Comparison of HC and PTSD cases in discovery (D) and validation (V) samples.

Discovery (D) Validation (V) D vs. V HC D vs. V PTSD

HC n= 71 PTSD n= 74 HC n= 36 PTSD n= 26 p-value p-value

Age (years, Mean (sd)) 32.58 (7.85) 32.50 (7.33) 33.83 (9.22) 36.83 (10.24) 0.463 0.022

Ethnicity (n, %)

Hispanic 23 (32.39%) 33 (44.59%) 6 (16.67%) 11 (42.31%) 0.079 0.211

Non-hispanic Asian 5 (7.04%) 1 (1.35%) 6 (16.67%) 3 (11.54%)

Non-hispanic black 17 (23.94%) 20 (27.03%) 6 (16.67%) 5 (19.23%)

Non-hispanic white 23 (32.39%) 19 (25.68%) 18 (50.00%) 7 (26.92%)

Non-hispanic other 3 (4.23%) 1 (1.35%) 0 (0.00%) 0 (0.00%)

Education (n, %)

Less than 12th grade 0 (0.00%) 1 (1.35%) 1 (2.78%) 1 (3.85%) 0.464 0.543

HS diploma or GED 13 (18.31%) 27 (36.49%) 10 (27.78%) 10 (38.46%)

2 years college, AA degree 19 (26.76%) 22 (29.73%) 8 (22.22%) 7 (26.92%)

4 years college, BA degree 27 (38.03%) 21 (28.38%) 10 (27.78%) 5 (19.23%)

Masters degree 11 (15.49%) 3 (4.05%) 7 (19.44%) 3 (11.54%)

Doctoral degree 1 (1.41%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

Body mass index (mean (sd)) 28.11 (4.36) 30.13 (5.23) 25.36 (8.38) 28.32 (8.76)

Cholesterol (mean (sd))

HDL cholesterol 50.30 (13.39) 47.81 (11.67) 52.35 (11.91) 46.85 (14.70) 0.441 0.740

LDL cholesterol 99.55 (25.50) 109.51 (32.12) 100.26 (27.71) 111.28 (31.50) 0.894 0.810

PTSD severity, Total CAPS (Mean (sd)) 3.37 (4.66) 68.12 (16.02) 3.97 (5.46) 67.15 (19.37) 0.550 0.803

Major depressive disorder (current depression)

(n, %)

0 (0.00%) 41 (55.41%) 3 (8.33%) 9 (34.62%) 0.060 0.111

Current alcohol use % none (n, %) 10 (14.08%) 20 (27.03%) 5 (13.89%) 2 (7.69%) 0.422 0.235
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Classifying subtypes with biomarkers and other feature
classes
To estimate how well biomarkers classified subjects into

subtypes, three RFs classifier models were grown with
multiple feature classes: S1 vs. HC, S2 vs. HC, S2 vs. S1,
and an RF to classify all cases vs HC for comparative
purposes. For each of these, six separate RFs were grown
using the six supplementary feature classes, and their
AUC-ROCs compared to assess the extent to which they
improved classification over that from blood biomarkers
alone (see Table S4). Additional RF pooling of all classes
was also grown.

Canonical correlation
We used canonical correlations34 to examine whether

the variables we found to be “important” in our RF dis-
tinguishing cases and controls were correlated with the
variables we found in our earlier classifier for PTSD cases
and controls8. To compare the relationship between two
sets of features, X1, X2,…Xu and Y1, Y2, …Yv, canonical-
correlation analysis was used to find the linear combina-
tion of the X variables and the linear combination of the Y
variables that has the maximum correlation with each
other. The pair of linear combinations of the X’s and Y’s
are called the first canonical variables. In a second step, a
similar maximization procedure seeks to find the linear
combination of the X variables and the linear combination
of the Y variables that maximizes their correlation subject
to the constraint that they are uncorrelated with the first
pair of canonical variables. The method continues until
the canonical correlations are too small to be of interest.
The maximum number possible is the smaller of u and v.
We report on the first three canonical correlations
obtained from comparing the important biomarkers from
our earlier and current study.

Validation approaches
Internal validation of any of the RFs grown for this study

was intrinsic to the bootstrap method used in which we
employed 4000 bootstrap samples to grow the trees, and
estimated errors from the out-of-bag samples. For exter-
nal validation of the RF used for clustering, it was scored
with the independent but demographically similar vali-
dation sample of 62 male veterans who had been assessed
on the same clinical scales. Table 1 displays the results of
a comparison of the characteristics of the discovery to the
validation sample.
Internal validation of the PAM clusters was measured by

silhouette scores35 that calculate the extent to which
members in a cluster are close to each other and distant
from members in other clusters (see Fig. S1a). Multi-
dimensional scaling was used to visualize the clusters via a
diffusion map36 (see Fig. S1b). Face validity of the derived
subtypes was appraised by determining whether differences

in the item scores between the individuals in the subtypes
were statistically different and clinically interpretable. Figure
S2 displays plots of the mean item clinical scores among
groups. Statistical differences in the total scale and subset
scores of the clinical scales between S1, S2, and HC were
tested with an ANOVA; and between: S1 vs. HC, S2 vs. HC,
and S2 vs. S1 with Wilcoxon rank-sum tests. Significance is
reported based on a family-wise error rate, (p < 0.0001).
Results are displayed in Table 2. Totals and subscales of the
clinical scores were also multivariately compared for the
first principal component (PC1) (see Table S5) of a prin-
cipal component analysis (see the first entry in Table 2).
However, to our knowledge, there are no available

methods to externally validate the clusters themselves, as
the ground truth, i.e., the “true” clusters in a validation
sample are not known. Further, our external validation
sample contained only 26 PTSD cases which, even if we
knew the truth, would generate even smaller samples in
the subtypes for any meaningful statistical testing. The
ability to accurately classify persons into the PTSD clinical
subtypes based on the blood biomarkers, a form of con-
current validity, was considered to provide external vali-
dation of the subtypes and by Dalenberg’s criteria of
meaningfulness of clinical subtypes23 that they are dis-
tinguishable by distinct biological mechanisms.

Results
Identifying PTSD subtypes in the discovery sample
Two clinical subtypes of PTSD cases were found with

PAM: the first, designated as S1, comprised of 26 (35.1%)
cases and the second, designated as S2, of 48 (64.8%)
cases. Table 3 displays the means (sds) of descriptive
characteristics of S1 and S2. Subjects in the subtypes were
similar on race/ethnicity, education, body mass index,
cholesterol, and HbA1c. They did not differ on their use
of psychotropic medications (71% in S1 and 62% in S2)
but higher percents in S2 have current and lifetime
depression (p < 0.05; 94% of members of S2 compared to
69% in S1).
S1 and S2 differ in clinical severity. The mean CAPS

score of individuals in S1 is 54.3 (sd 6.6), and of those in
S2 is 75.6 (sd 14.6). Those in S2 compared to S1 have
significantly higher mean severity scores on almost all
individual items of the 16 clinical scales (see Fig. S2). In
the principal component analysis of the total scale and
subscale scores of the clinical scales used for subtyping,
PC1 accounted for 64% of the total variance and had fairly
equal factor weights on all of the clinical scale scores.
Each of the additional principal components accounted
for ≤5% of the total variance (see Table S5). All summary
scale scores statistically differed between groups overall
and in most pairwise comparisons of groups as noted in
Table 2. In particular, the mean PC1 score of those in S2
was three times that of the S1 group.
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Table 2 Clinical assessments of HCs, S1, S2: ANOVAs and t-test comparisons of mean (sd) scores for total and subscale
scores and for principal component 1 of a multiscale PCA analysis.

Variables HCs S1 S2 p *values

S1 vs. S2 vs. HC S1 vs. HC S2 vs. HC S2 vs. S1

PC1 3.97 (1.75) 1.57 (2.65) 5.02 (3.10) <0.0001 <0.0001 <0.0001 <0.0001

CAPSTOT 3.37 (4.66) 54.31 (6.61) 75.60 (14.58) <0.0001 <0.0001 <0.0001 <0.0001

PCLSCORE 25.20 (8.27) 53.69 (11.03) 64.81 (10.98) <0.0001 <0.0001 <0.0001 <0.0001

SCLSOM 0.22 (0.27) 0.97 (0.63) 1.47 (0.82) <0.0001 <0.0001 <0.0001 0.008*

SCLOC 0.56 (0.67) 1.77 (0.90) 2.30 (0.82) <0.0001 <0.0001 <0.0001 0.013*

SCLINT 0.31 (0.45) 1.21 (0.83) 1.85 (0.92) <0.0001 <0.0001 <0.0001 0.004*

SCLDEP 0.32 (0.41) 1.40 (0.77) 2.09 (0.78) <0.0001 <0.0001 <0.0001 0.001*

SCLANX 0.16 (0.24) 1.07 (0.71) 1.89 (0.85) <0.0001 <0.0001 <0.0001 <0.0001

SCLHOS 0.25 (0.31) 1.27 (1.06) 2.08 (0.96) <0.0001 <0.0001 <0.0001 0.001*

SCLPHOB 0.09 (0.17) 0.88 (0.64) 1.74 (0.81) <0.0001 <0.0001 <0.0001 <0.0001

SCLPAR 0.32 (0.40) 1.37 (0.90) 1.78 (1.04) <0.0001 <0.0001 <0.0001 0.097*

SCLPSY 0.18 (0.28) 0.76 (0.62) 1.34 (0.82) <0.0001 <0.0001 <0.0001 0.002*

SCLGSI 0.280 (0.30) 1.23 (0.61) 1.86 (0.72) <0.0001 <0.0001 <0.0001 <0.0001

SCLPST 17.39 (15.46) 53.19 (20.92) 67.85 (14.62) <0.0001 <0.0001 <0.0001 0.001*

SCLPSDI 1.30 (0.31) 2.04 (0.43) 2.42 (0.64) <0.0001 <0.0001 <0.0001 0.008*

PSQI 5.87 (3.58) 11.73 (3.37) 13.88 (3.13) <0.0001 <0.0001 <0.0001 0.008*

BDI_total 5.37 (5.42) 17.50 (8.65) 28.75 (9.99) <0.0001 <0.0001 <0.0001 <0.0001

PANAS_PA 34.46 (8.6) 27.92 (6.70) 23.88 (7.27) <0.0001 0.001 <0.0001 0.022*

PANAS_NA 15.06 (4.37) 23.00 (7.25) 31.65 (7.90) <0.0001 <0.0001 <0.0001 <0.0001

MCS 63.20 (12.81) 106.42 (15.38) 123.79 (19.17) <0.0001 <0.0001 <0.0001 <0.0001

STAX 15.66 (1.45) 21.0 8 (7.79) 26.98 (12.30) <0.0001 <0.0001 <0.0001 0.03*

PSS 1.79 (0.58) 2.73 (0.72) 3.22 (0.57) <0.0001 <0.0001 <0.0001 0.002*

PDEQRV 1.23 (0.25) 1.72 (0.50) 1.87 (0.43) <0.0001 <0.0001 <0.0001 0.198*

PDEQEV 0.42 (0.58) 1.54 (1.050) 2.12 (0.93) <0.0001 <0.0001 <0.0001 0.016*

PDI rv 1.08 (0.60) 1.86 (0.92) 2.24 (0.64) <0.0001 <0.0001 <0.0001 0.041*

PDI ev 0.86 (0.58) 1.82 (0.73) 2.32 (0.79) <0.0001 <0.0001 <0.0001 0.01*

ASI 11.49 (9.81) 16.89 (10.03) 28.98 (14.07) <0.0001 0.019* <0.0001 <0.0001

sumERS 35.01 (7.81) 26.42 (6.26) 23.33 (8.08) <0.0001 <0.0001 <0.0001 0.095*

PF_T 52.96 (7.76) 48.54 (9.07) 45.19 (12.55) <0.0001 0.02* <0.0001 0.235*

RP_T 53.61 (7.40) 47.43 (8.87) 43.07 (12.83) <0.0001 0.001* <0.0001 0.127*

BP_T 51.99 (9.25) 45.68 (10.67) 41.52 (13.28) <0.0001 0.005* <0.0001 0.173*

GH_T 48.63 (9.89) 41.67 (10.26) 37.28 (11.97) <0.0001 0.003* <0.0001 0.118*

VT_T 52.29 (9.13) 41.17 (9.84) 38.53 (9.48) <0.0001 <0.0001 <0.0001 0.262*

RE_T 49.86 (9.89) 40.38 (10.25) 30.80 (13.30) <0.0001 <0.0001 <0.0001 0.002*

SF_T 51.88 (9.17) 38.31 (9.48) 30.69 (11.20) <0.0001 <0.0001 <0.0001 0.004*

MH_T 51.41 (9.20) 39.92 (9.04) 31.01 (9.90) <0.0001 <0.0001 <0.0001 <0.0001

*Not significant using Bonferroni corrected p value, p < 0.0001.
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Validation
Figure S1b, a two-dimensional diffusion mapping of the

RF distance scores based on a multidimensional scaling
procedure, displays clear separation of HC from S1 and S2
and indicates greater dispersion among the members of
S1 compared to S2. The silhouette scores reflect this:
S1=−0.25, S2= 0.54 in comparison to HC= 0.76 (see
Fig. S1a). The RF used to obtain the proximity of cases
was scored with the external validation sample yielding an

AUC of 0.99. The ability to classify persons into subtypes
based on biological and other variables distinct from the
subtyping variables with high accuracy reported below, a
form of concurrent validity, was considered supportive of
the external validity of the subtypes.

Biomarker classification of PTSD subtypes
The subtypes were accurately classified with a multi-

omic panel of 342 biological markers that RF analyses
substantially reduced to 71 unique “important” biological
markers over all intergroup comparisons. Table S4 dis-
plays the AUCs for each intergroup comparison for each
feature class and the feature classes pooled. The AUCs
and the number of important features in each of the
down-selected intergroup models are: S1 vs. S2: AUC=
0.819, number of markers= 10; HCs vs. S1: AUC= 0.911,
number of markers= 23; HCs vs. S2: AUC= 0.922,
number of markers= 37. Supplementary Table S6 dis-
plays the set of important multi-omic features identified
in any of the intergroup contrasts (n= 71), the mean (sd)
values for each subtype, and HCs.
Table 4 displays for the top 5 markers in each com-

parison (n= 15 markers) the results of significance tests
of equality of the means between the groups in an inter-
group classification. Indicated is whether the marker
found to be significant was up or down-regulated in the
more severe group, as determined by a comparison of
mean values. For comparisons of S2 vs. HC and of S1 vs.
HC, mean values of the top five features of the groups
significantly differed, and all markers except lactate were
downregulated in the more severe group. The top five
markers in the RF comparing S2 to HC were lactate,
CG20720918 and CG03267026 and miR-106b.3p, and
miR-93.3p. For S1 vs. S2 only one marker, cg13034868
statistically differed between groups indicating down-
regulation in the severe group.

Classification into subtypes by other feature classes
When all feature classes were included in RFs for

intergroup classification models, the AUCs only slightly
increased over that for biomarkers alone. For example,
when all classes are combined (see Table S4), the AUC of
S2 vs. HC is 0.968, only a 5% increase over that obtained
with blood biomarkers alone (0.922). No feature class
alone provided greater accuracy than did the biomarker
class alone. In the classification model of S2 vs. HCs,
neuro-cognitive functions and psychiatric history had
AUCs of 0.72 and 0.84 with vocabulary test scores and
lifetime major depression ranked as the most important
features in these RF (see Table S7).

Discussion
S2 is clinically a more severely ill group, with clinical

item scores indicating greater severity for almost every

Table 3 Comparison of selected characteristics of S1 and
S2.

S1 n= 26 S2 n= 48 ap-value of

S1 vs. S2

Age (years, Mean (sd)) 31.5 (6.36) 33.04 (7.82) 0.392

Ethnicity (%)

Hispanic 9 (34.62%) 24 (50.00%) 0.488

Non-hispanic Asian 0 (0.00%) 1 (2.08%)

Non-hispanic black 8 (30.77%) 12 (25.00%)

Non-hispanic white 9 (34.62%) 10 (20.83%)

Non-hispanic other 0 (0.00%) 1 (2.08%)

Education (%)

Less than 12th grade 0 (0.00%) 1 (2.08%) 0.5656

HS diploma or GED 11 (42.31%) 16 (33.33%)

2 years college, AA

degree

5 (19.23%) 17 (35.42%)

4 years college, BA

degree

9 (34.62%) 12 (25.00%)

Masters degree 1 (3.85%) 2 (4.17%)

Doctoral degree 0 (0.00%) 0 (0.00%)

Body mass index

(mean (sd))

29.59 (5.38) 30.43 (5.18) 0.515

Cholesterol (mean (sd))

HDL Cholesterol 47.51 (11.80) 47.97 (11.72) 0.872

LDL Cholesterol 113.64 (38.28) 107.26 (28.43) 0.419

Psychiatric diagnoses

% Current major

depression

8 (30.77%) 33 (68.75%) 0.0017

% Current no

alcohol use

11 (42.31%) 20 (41.67%) 0.9574

% Lifetime

depression

18 (69.23%) 45 (93.75%) 0.0128

Psychotropic medication

% on medication 17 (70.83%) 24 (61.54%) 0.4523

aBased on chi-square or ANOVA tests comparing S1 with S2 on the
characteristic.
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item of all clinical scales considered, underscored by a
mean total CAPs score difference between subtypes of 21
points (54.3 vs. 75.6). Almost all in S2 reported having
lifetime major depression. Among the six feature classes
studied, multi-omic biomarkers provided the highest
accuracy for classification into subtypes, suggesting that
clinically defined subtypes have strong biological under-
pinnings. Subtyping into clinical severity groups and high
accuracy classification models using multi-omic blood
markers provides strong support for biological associa-
tions with levels of PTSD severity.
That biological markers can be used for the classifica-

tion of PTSD vs. HC was previously reported by our
consortium in Dean et al.8 using 28 biomarkers. Using our
RF methods and down selecting from the same 342
markers, in the present study we obtained an RF with 48
biomarkers, six of which are in common with the original
28, resulting in a high AUC of 0.91. That our current
markers do not totally overlap with the original 28 may be
explained in part by strong correlations among many
molecular markers. To test this assumption we examined
the canonical correlations of the 22 non-overlapping
features from our earlier study with the 42 non-
overlapping markers from our current study. The first
three canonical correlations were 0.94, 0.90, and 0.84,

demonstrating high correlations between the two sets of
markers.
There are several published reports on the possible

biological connections of markers to PTSD. We discuss
the top five most important markers in the RF of the most
extreme severity group contrast, S2 vs. HC37–48 viewing
this contrast as most likely to identify signature pathways.
Lactate, an important marker, is elevated, as was also
found in earlier studies of the SBC8,37. It also has been
found to be elevated in anxiety and panic disorder38.
Cerebral lactate level is elevated in patients with schizo-
phrenia39. Lactate is a marker for anaerobic metabolism,
which is frequently elevated during physiological stress
such as hypoxia, infection, and inflammation. As PTSD is
a multi-systemic disorder, it is not surprising that there
are stress responses at the cellular level, which may be a
cause or the result of PTSD meriting further investigation.
The other four top markers in the RF classifying S2 vs.

HC are CG20720918 (GORASP2), CG03267026 (BRSK2),
miR-106b, and miR-93. These are molecular markers that
are differentially expressed in various neurological and
psychiatric illnesses. Both GORASP2 and BRSK2 genes
are involved in the endoplasmic reticulum (ER) stress
response which often results in apoptosis. GORASP2
encodes Golgi reassembly-stacking protein 2, also called

Table 4 Significance* of difference in mean marker values and direction of dysregulation in the more severe group in
intergroup comparison for top 5 RF importanta biomarkers.

RF S2 vs. S1 S1 vs. HCs S2 vs. HCs PTSD cases vs. HCs

# markers retained in RF 10 23 37 48

hsa.miR.93.3p <0.001 (4) ▼ <0.001 (1) ▼

cg01882498 0.003 (1) ▼

cg01208318 <0.001 (4) ▼ <0.001 (2) ▼

cg20720918 <0.001 (1) ▼ <0.001 (3) ▼

cg13034868 0.001 (1) ▼

hsa.miR.106b.3p <0.001 (2) ▼ <0.001 (4) ▼

lactate <0.001 (3) ▲

cg23594345 <0.001 (2) ▼ <0.001 (5) ▼

cg15687973 0.001 (3) ▼

cg18171204 0.594 (2)

hsa.miR.127.3p <0.001 (5) ▼

cg03267026 0.002 (5) ▲

cg06751007 0.211 (3)

eosino 0.106 (4)

APOF.SGV 0.023 (5)

▼= for significant markers, downregulated in more severe group based on comparison of mean values.
▲= for significant markers, upregulated in more severe group based on comparison of mean values.
*FWER, Bonferroni corrected p < 0.0025, p-value bolded.
a()= importance rank in RF.
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GRASP55 (Golgi reassembly-stacking protein of 55 kDa),
a membrane protein important in maintaining the
stacking of Golgi cisternae. DNA hypomethylation of
GORASP2 is associated with medial temporal epilepsy40.
The transcriptional level of GORASP2 is also found to be
altered in patients with Alzheimer’s disease (AD)41. Copy
number variation of GORASP2 has also been found in
autism spectrum disorder (ASD)42. On the other hand,
BRSK2 encodes brain-specific kinase-2 involved in
apoptosis as an ER stress response and also has a role in
axon development. BRSK2 has been recently found to be a
strong risk gene for ASD43. Autoantigen against BRSK2
was also found in paraneoplastic limbic encephalitis44.
The relationship between the two microRNAs, miR-106b
and miR-93, and PTSD is more enigmatic. Micro RNAs
are short single-stranded non-coding RNAs that regulate
gene expression by binding to complementary sequences
in their target mRNAs′ 3′-untranslated region (UTR), and
also to a lesser extent to the 5′-UTR and coding regions.
Both of these miRNAs have lower levels in the S2 subtype
compared to the HC subjects. They are derived from the
MCM7 (mini-chromosome maintenance) gene, which
encodes a protein essential for the initiation of eukaryotic
genome replication and belongs to the highly conserved
miR-106b-25 cluster. The serum levels of miR-106b have
been shown to be upregulated in both schizophrenia and
bipolar disorder45,46, which is the opposite of our finding
in the S2 subtype patients. On the other hand, serum
miR-93 levels are significantly decreased in patients with
AD47. It is possible that PTSD patients have significant ER
stress at the subcellular level, although the exact
mechanism merits further investigation. On the other
hand, as microRNAs target multiple molecular pathways
simultaneously based on their sequence homology, not on
function, it is not surprising that similar changes in serum
microRNA levels may be found in different diseases. The
mechanism of action of microRNAs is complex and
involves a variety of signaling pathways and target genes.
For example, studies have shown that miR-106b and miR-
93 induce the migration, invasion, and proliferation of
cancer cells and simultaneously enhance the activity of
the phosphatidylinositol-3 kinase (PI3K)/AKT pathway48.
Whether the PI3K/AKT pathway is disturbed in PTSD,
other neurological or psychiatric diseases and cancers
remains unclear. However, it is likely that PTSD involves
dysregulation of multiple pathways.

Limitations
Our discovery sample was modest in size, limiting the

identification of subtypes to two groups. Its restriction to
males limits its generalizability. Our findings require
replication in larger and more diverse samples, including
female veterans and trauma-exposed civilians with and
without PTSD. Our participants were 6–10 years post

their index traumatic events, not allowing for subtyping
closer in time to exposure. In addition, we did not include
participants with other psychiatric disorders, leaving
unanswered the question of whether our findings gen-
eralize to severity subgroups of other disorders. While
considering a large set of multi-omic blood markers bio-
markers, we did not include structural, functional, mole-
cular, and EEG neuroimaging markers, and to do so might
have increased classification accuracy of the PTSD sub-
types modeled. Identified biomarkers differed between
models, but might be highly correlated or otherwise
multivariately related. Further exploration is required of
identified multivariate marker profiles to clarify their
relationship to each other and to severity.

Conclusions
Our findings suggest that male veterans with military

service-related PTSD with more severe symptoms across a
wide range of clinical scales assessing PTSD and its
comorbidities can be biologically distinguished from HC
on blood biomarkers most of which are mRNA and
methylation markers. Down-regulation of these markers
in relationship to severity is suggested while an increase in
mean serum lactate levels was noted. There is evidence in
the literature that the top five biological markers that
differentiated the more severe group from HC are also
associated with various neurological and psychiatric ill-
nesses. Biological markers outperform other potential
predictor classes—current medical comorbidities, neuro-
cognitive functioning, demographics, pre-military trauma,
and psychiatric history—as evidenced by their sub-
stantially higher AUCs.
The importance of the associations among the biologi-

cal features and clinical severity is likely a reflection of a
complex disorder. Studies of the mechanistic pathways
and similarities with other illnesses may provide direc-
tions for future research for understanding the biological
basis of PTSD. The use of well-calibrated biological
markers for PTSD subtype classification can help bring
symptom-based diagnosis to a more objective laboratory
basis and facilitate the development of treatments tar-
geted to severity.
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