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The mammalian immune system is a dynamic multiscale system composed of a
hierarchically organized set of molecular, cellular, and organismal networks that
act in concert to promote effective host defense. These networks range from those
involving gene regulatory and protein–protein interactions underlying intracel-
lular signaling pathways and single-cell responses to increasingly complex net-
works of in vivo cellular interaction, positioning, and migration that determine
the overall immune response of an organism. Immunity is thus not the product
of simple signaling events but rather nonlinear behaviors arising from dynamic,
feedback-regulated interactions among many components. One of the major goals
of systems immunology is to quantitatively measure these complex multiscale spa-
tial and temporal interactions, permitting development of computational mod-
els that can be used to predict responses to perturbation. Recent technological
advances permit collection of comprehensive datasets at multiple molecular and
cellular levels, while advances in network biology support representation of the
relationships of components at each level as physical or functional interaction net-
works. The latter facilitate effective visualization of patterns and recognition of
emergent properties arising from the many interactions of genes, molecules, and
cells of the immune system. We illustrate the power of integrating ‘omics’ and net-
work modeling approaches for unbiased reconstruction of signaling and transcrip-
tional networks with a focus on applications involving the innate immune system.
We further discuss future possibilities for reconstruction of increasingly complex
cellular- and organism-level networks and development of sophisticated computa-
tional tools for prediction of emergent immune behavior arising from the concerted
action of these networks. Published 2015. This article is a U.S. Government work and is in the
public domain in the USA.
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INTRODUCTION

Decades of reductionist biological study have
resulted in cataloging the enormous numbers

of components (genes, gene products, metabolic
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intermediates, macromolecules, and cells) that make
up a living creature, especially complex metazoans.
In an effort to place these extensive lists of parts
into a coherent framework that helps illuminate
their functional and/or structural relationships and
that can also help provide insight into how pertur-
bations of the cellular or organismal environment
lead to changes in cell or organism behavior, biolo-
gists have increasingly invested in building network
models of these relationships. A network is an arti-
ficial construct that organizes complex multivariate
relations in a structured format for systematic math-
ematical analysis and intuitive visual representation.
Nodes and edges are the building blocks of any
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network, also called a graph, where nodes represent
variables and edges represent relationships between
the variables. As this is a fairly general concept,
network analysis has been applied to several fields,
including sociology, air-traffic, electric power grids,
and counter-terrorism.1–3 In recent times, network
analysis has also been applied extensively in biology,
especially in computational and systems biology
research.4,5 In most biological networks, nodes are
macromolecules, such as genes, RNAs, proteins,
metabolites, or cells, and a given network can be com-
posed of more than one type of macromolecule or cell.
The edges in these networks can depict connections
between entities under general or specific conditions,
and can represent anything from a physical interaction
to regulatory or functional relationships.

Comprehensive reviews have appeared on
molecular networks and their applications.4–9 In this
article, we focus specifically on network concepts in
the context of the immune system, which is composed
of many dynamic, multiscalar processes. Immune cells
sense infection and other environmental cues through
a variety of extracellular and intracellular receptors.
Ligation of these receptors leads to signaling cas-
cades consisting of many dynamic processes including
signal-induced protein binding, phosphorylation,
degradation, and nuclear localization. These signaling
events lead to changes in gene expression, and sub-
sequently to the production of both effector proteins
required to combat infection and proteins involved in
regulation of the ensuing, potentially host-damaging,
response. The number of molecular players or vari-
ables involved in any such activity can vary from
hundreds to thousands, making immune responses
immensely complex. This complexity is amplified
by the multiscalar nature of the immune system, as
these signaling and transcriptional responses occur
in the context of diverse and dynamic cell–cell inter-
actions. The different types of immune cells, from
innate myeloid cells to lymphocytes, receive cues from
different classes of receptors, produce distinct effector
molecules, and depend on cues from each other as
well as from the tissue microenvironment to respond
appropriately. Pathogen invasion of host cells fur-
ther exaggerates this complexity; while immune cells
mount an inflammatory response to contain infection,
pathogens attempt to evade immune recognition and
modulate the host response by secreting a variety
of virulence factors. The nature and magnitude of
the host immune response is therefore dictated by
extensive dynamic molecular and cellular interactions
within and between host and pathogen, which can be
represented by multiple types of networks.

Given the intricate interactions that underlie
immune function, the use of networks as mathematical
abstractions of complex relationships is not only
suitable but also necessary for understanding immune
responses.10,11 Here, we apply network concepts at
different molecular and cellular scales to elucidate
some of the unique aspects of the immune system
that make it particularly suitable for network-based
studies. In section Molecular Networks, we intro-
duce different types of molecular networks and the
resources through which they can be accessed. In
section Intracellular Molecular Networks in Innate
Immunity, we discuss how application of network
analysis methods can provide insights into intracellu-
lar molecular networks underlying the innate immune
response. In addition to intracellular interactions,
crosstalk between immune cells as well as their spa-
tial organization and migration within tissues in vivo
are critical to the effective development of innate
and adaptive immune responses. These intercellular
interactions, which are functions of space and time,
are represented as networks in section Intercellular
and Organismal Networks. Another unique aspect of
immunity, i.e., host–pathogen crosstalk, is represented
as interaction between host and pathogen networks
in section A Network Perspective of Host-Pathogen
Interactions (HPIs). Each of these areas is large in and
of itself and we cannot be comprehensive in this short
review; our objective is to introduce general network
biology concepts and elucidate how network analy-
sis can be used to represent and interrogate different
aspects of the immune system.

MOLECULAR NETWORKS

Network analysis has mostly been applied to bio-
logical systems to model macromolecules at the
genome scale. In this section, we discuss the gen-
eral concepts of these molecular networks, available
resources, and their applications. Based on the
types of macromolecules and the nature of their
interactions, networks can be classified into differ-
ent categories, such as metabolic, gene regulatory,
protein–protein interaction (PPI), genetic interac-
tion and signaling networks.7 These networks have
been created using a combination of experimen-
tal and computational approaches. Technological
breakthroughs and computer-aided automation have
enabled high-throughput experiments and the efficient
generation of large unbiased datasets that are partic-
ularly valuable for network construction. Molecular
networks have also been created by manual curation
of vast amounts of existing literature by domain
experts. Although this process is painstakingly long
and labor intensive, the resulting molecular networks
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are of good quality with low false-positive rates. An
alternate approach is to apply text-mining algorithms
to scientific articles and abstracts to predict molecular
networks. As expected, this strategy may expedite
the process of network construction at the cost
of increased false-positive rates. A list and brief
description of databases for gene regulatory, PPI, and
signaling networks is provided in Table 1.

Gene regulatory networks (GRNs) represent
control of gene expression or gene-specific RNA
amounts by regulatory components such as tran-
scription factors (TFs), activators, repressors, and
microRNAs (miRNAs). Hence, each node in the GRN
either corresponds to a target gene or a regulator
of the gene or its RNA product. Several experimen-
tal and computational methods have been used for
constructing GRNs. Two complementary experimen-
tal approaches are often used to generate data for
these networks; Yeast one-hybrid assays can identify
TFs that regulate a gene,31 while ChIP (chromatin
immunoprecipitation)-chip and ChIP-seq experiments
can predict potential target genes of a TF32 by map-
ping protein–DNA interactions. Several algorithms
have been developed for computationally predicting
GRNs, which are categorized and compared in two
recent review articles.33,34 Recently, a collaborative
and community-driven approach was used for predict-
ing GRNs through the consortium DREAM (Dialogue
on Reverse Engineering Assessment and Methods).35

Many biological processes are dependent on
physical interactions between individual proteins and
spatial patterns of movement of numerous proteins
within the cell. Thus, elucidating and interpreting
these interactions is essential for understanding the
resulting biological function. PPI networks attempt
to capture large-scale interaction information, where
each node represents a protein and edges corre-
spond to physical interactions. High-throughput
experimental techniques, such as yeast two-hybrid
(Y2H)36–39 and affinity purification–mass spectrome-
try (AP-MS),40–42 are the most widely used methods
for identifying PPIs. While Y2H can identify phys-
ical and binary interactions between a protein pair
in vivo, AP-MS is suitable for identifying whole
protein complexes with multiple interacting part-
ners. Computational approaches use different types
of information, such as evolutionary relationships,
three-dimensional protein structure, and the presence
of specific protein domains, to predict PPI networks.
Network representation of protein–protein and gene
regulatory interactions allows us to study the topolog-
ical properties of these interactions. In Figure 1(a) and
(b), we highlight the contrast between the architecture
of PPI networks and GRNs.

One concern in the PPI network construction
community is the lack of reproducibility among
networks generated in different laboratories using dif-
ferent (and in some cases, nominally the same) experi-
mental methods, implying a high rate of false-positive
and/or false-negative interaction calls in the vari-
ous studies.43 Some computational algorithms have
attempted to address this issue by assigning confi-
dence scores to each of the interactions,44 but others
have focused on the lack of standard operating proce-
dures among laboratories using a single method such
as MS to study PPIs. Indeed, standardization of pro-
tocols between laboratories has markedly increased
the agreement in PPI networks derived from such
studies.45

Signaling networks respond to inputs from
extracellular and intracellular stimuli, process the
inputs to distill signal from noise, and ultimately
integrate the incoming information to ensure an
appropriate functional response (Figure 1(c)). These
networks show architectural similarity to electric
circuits, as they have distinct components for sensing,
processing/filtering, and transmission of signals.46

Unlike GRNs and PPI networks, the nature of the
nodes and edges of signaling networks can be diverse.
Nodes in a typical signaling network most often
represent proteins and protein complexes, but can
also represent genes, RNAs, chemical compounds,
or any variable that can impact transmission of the
signal from the starting point, often a receptor, to
the end of the cascade, for example, a TF or gene.
The edges of signaling networks can be physical
binding, phosphorylation, ubiquitination, glycosyla-
tion, or transcriptional regulation, as in the case of
signal-induced transcription of signaling components.

While global molecular networks repre-
sent all possible interactions and regulations that
can be achieved by the components, overlaying
high-throughput data obtained from experimental
perturbations onto the network can identify regions
of the network functionally active under a specific
condition. By analogy, if a global network represents
the comprehensive street map of a city, overlaying
data can indicate regions of high traffic volume
at a specific time of the day. Several algorithms
that integrate high-throughput data with GRNs,6,47

PPI networks,48,49 and signaling networks50,51 have
been developed. The performance of these algo-
rithms depends on the choice of network resource,
signal-to-noise levels in high-throughput data, sen-
sitivity and specificity of the scoring metric, and
statistical tests for estimating the significance.

Representing complex relationships using net-
works facilitates effective visualization, which in
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FIGURE 1 | Architecture of human gene regulatory and protein–protein interaction networks. (a) Human transcription factor regulatory network
(TRN). The human TRN was downloaded from Ref 17. The network is displayed using the Cytoscape force-directed layout. Each node in the network is
a transcription factor (TF), and edges represent transcriptional regulation. As transcriptional regulation is directed, network edges are directional from
a TF to its target. The network has 3107 nodes and 6887 edges. The network clearly shows a hierarchical architecture as observed in Ref 17. Only a
small subset of TFs regulate most of the other TFs, which is obvious from the modularity of the network architecture. The network can be divided into
regions that are either autocratic or democratic. In the autocratic regions, a TF is usually regulated by a single TF whereas in the democratic regions a
TF is regulated by multiple TFs. Circles highlight some of the autocratic regions. (b) Human protein–protein interaction (PPI) network. The network
was downloaded from the Human Protein Reference Database (HPRD) and displayed using the Cytoscape force-directed layout. Each node in this
network is a protein. The edges of the network represent protein–protein associations observed in the literature and manually curated in the
database. As PPIs do not have directionality, the network edges are nondirectional. The PPI network has 9251 nodes and 38,869 edges, hence it is
much bigger compared with the gene regulatory network (GRN). Unlike the GRN, the PPI network shows lack of hierarchy. (c) A schematic
representation of a typical signaling network. Ligands are sensed by specific membrane-bound receptors (R1 and R2) followed by signal transduction,
often mediated by adapter proteins that associate with the effector domains of receptors. The complex signaling circuitry further propagates and
processes the signal through multiple steps, including signal integration, amplification [for instance by phosphorylation (P) or dephosphorylation of
specific mediators], and noise reduction. Finally, the actuator, usually a TF, directs expression of appropriate target genes based on the processed
signal. Different cellular components and their analogs in electric circuits are indicated on the left and right, respectively.

turn aids in easy recognition of patterns and emer-
gent properties arising from these interactions. In
network visualization, nodes can be laid out in dif-
ferent ways, e.g., random, circular, hierarchical, or
spring embedded. Different properties of the nodes
and edges can also be represented by their color, size,
shape, and border. Table 2 enlists some of the visu-
alization tools widely used for rendering molecular
networks. Among these tools, Cytoscape is one of
the oldest and the most widely used. Some of the
reasons behind this popularity are its user-friendly

interface and its open-source platform, which allow
any developer to create plug-in software.61 Most
of the plug-ins not only help in network rendition
but also allow different network-based analyses
within the interactive visualization framework. Sim-
ilarly, several visualization and analysis tools are
also available through R Bioconductor, which is
the biggest repository of bioinformatics tools. The
igraph package provides a large number of sophisti-
cated analysis tools along with network visualization
tools, and is used by diverse research communities.

Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
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TABLE 2 Visualization of Biological Networks (Following Are Some of the Major Tools for Visualization of Networks and Pathways)

Tool

Plugin/Package

(Total Downloads) Description

Cytoscape ClueGO (13822)52 Identifies enriched gene ontology (GO) and pathway terms from a list of genes and
represents interrelations of enriched terms as a network.

BiNGO (9975)53 Determines which GO categories are statistically overrepresented in a set of genes or a
subgraph of a biological network.

GeneMANIA (7981)54 Predicts function of a query gene set using guilt-by-association approach from a large
database of functional interaction networks.

CluePedia (6801)55 Extends the ClueGO plug-in by rendering a network of genes corresponding to each
enriched GO and pathway term using data and existing knowledge.

MCODE (6425)56 Finds densely connected regions or clusters in a biological network. The biological
interpretation of the clusters depends on the type of network.

jActiveModules (5728)48 Overlays gene expression data on biological networks to identify expression-activated
subnetworks or network hotspots.

R Bioconductor Rgraphviz (63259) Renders R graph objects and provides multiple options for layout, node, and edge
properties. It is used by several Bioconductor packages for network rendering.

Pathview (7726)57 Overlays gene expression data onto KEGG canonical pathway map.

BioNet (5309)58 Scores each node by differential expression and identifies significantly differentially
expressed subgraphs from large biological networks. Subgraphs are rendered using
2D and 3D visualization.

RedeR (3851)59 A package that combines R-based computational analysis with Java-based visualization
for dynamic network visualization and manipulation.

cisPath (2722) A package for management, visualization, and editing of PPI networks. cisPath creates
HTML files, which can be visualized using standard web browsers.

igraph A general-purpose graph package in R and Python language. Provides hundreds of
functions for creating, manipulating, optimizing, and rendering graphs.

Web-tools STRING18 The web interface can render a network of query gene(s) and their direct neighbors from
the underlying network database, which is created by combining different sources,
e.g., co-expression, text mining, and co-occurrence.

Pathway Commons60 Allows the user to search, visualize, and download network neighbors of query genes
from publicly available pathway databases.

Unlike Cytoscape, use of R Bioconductor or
igraph tools requires programming experience.
STRING18 and Pathway Commons60 are examples
of web-based resources for visualizing smaller net-
works, typically interacting partners of queried
gene(s).

Deriving conclusions from computational
and visual analyses of any large-scale network is a
formidable challenge. Some researchers have focused
on studying topological properties of the nodes
and finding their biological relevance. For example,
Barabasi and Albert62 argued that genetic and sig-
naling networks are scale-free (i.e., network degree
distribution follows a power law) and the networks
were developed through preferential attachment dur-
ing evolution. In scale-free networks, ‘hub’ nodes
(i.e., nodes with large numbers of interacting part-
ners) play the most important roles and the network

will cease functioning if these nodes are deleted. In
a complementary study, Yu et al.63 observed that
it is not the hub nodes but the nodes with high
betweenness centrality (i.e., network nodes that have
many ‘shortest paths’ going through them) that are
essential in a protein network. Specific experimen-
tally testable hypotheses are often derived from a
network by combining its topological properties with
biological information. In the next section, we discuss
specific examples where network analysis has led up
to experimentally testable hypotheses.

INTRACELLULAR MOLECULAR
NETWORKS IN INNATE IMMUNITY

The functions of the immune system, such as pro-
tective host defense under normal conditions or

Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
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autoimmune disease when dysregulated, are encoded
in interactions between its constituents operating in
underlying complex dynamic molecular and cellular
networks. These include GRNs, PPI networks, and sig-
naling and metabolic networks introduced in section
Molecular Networks. In this section, we discuss these
networks in the context of the innate immune sys-
tem, which detects microbial infection or tissue dam-
age by employing a repertoire of pattern recogni-
tion receptors (PRRs), which are present on the sur-
face of the cell or in the cytoplasm. These include
the Toll-like receptors (TLRs), nucleotide binding and
oligomerization domain-like receptors (NLRs), C-type
lectin receptors (CLRs), the retinoic acid-inducible
gene I-like receptors (RLRs),64 as well as several puta-
tive sensors of intracellular DNA.65

The processes that enable an effective innate
response can be broadly grouped into four cate-
gories, namely transcriptional, translational, spatial,
and functional networks (Figure 2), which are higher
level processes encompassing the GRNs, PPI net-
works, and signaling networks discussed previously.
Each node in these diverse networks is a complex
biological entity (e.g., innate sensors such as TLRs,
NLRs, RLRs, and CLRs) or a biological process (e.g.,
transcription, translation, subcellular location, signal-
ing, and heterogeneity) that is itself comprised of
underlying subnetworks (Figure 2). That is, each node
in the functional cellular network can be recast as
a more complex subgraph that explodes the higher
level node into its constituent parts with new nodes
and edges. For instance, the process of ‘transcrip-
tion’ in turn comprises of the nodes ‘cofactor, TF,
promoter/enhancer’ and edges depicting connections
between these constituent nodes (Figure 2). The edges
in the higher order network represent functional con-
nections in the context of an innate insult such as
pathogen invasion or exposure to endogenous signals
arising from tissue damage.

To perform network analysis of a complex
system such as the innate immune system, infor-
mation must thus be captured and integrated from
many hierarchical levels. These levels include genomic
information (DNA sequences and associated poly-
morphisms, epigenetic regulation), transcriptional
information (RNA sequences and abundances, alter-
nate splice forms, noncoding RNAs such as lnc
RNAs and miRNAs), translational information (pro-
tein abundances, RNA-binding regulatory proteins,
post-translational modifications), spatial informa-
tion (protein localization to subcellular structures
such as cell membranes, cytosol mitochondria, endo-
somes, or peroxisomes), cellular signaling processes
(protein–protein and protein–DNA interactions,

organization of proteins, lipids, and other molec-
ular entities into pathways), cellular heterogeneity
(information on functionally distinct cell subtypes
or stochastic differences between single cells of the
same subtype), cell–cell interactions, and organiza-
tion of cells into tissues, organs, organ systems, and
ultimately the resulting phenotypes (Figure 2). Recent
technological advances have enabled us to query these
many levels through acquisition of large-scale ‘omics’
datasets that have facilitated network biology research
in the context of innate immune molecular mecha-
nisms. Genomics (sequencing of whole genomes) is
complemented by transcriptomics (characterization
and quantification of mRNA species), proteomics
(characterization and quantification of proteins and
associated modifications), and more recently with
metabolomics and lipidomics (comprehensive char-
acterization of abundance of lipids and metabolites).
The wiring of networks representing the data gath-
ered in this manner can in turn be expected to vary
depending upon the nature of the immune cell [e.g.,
macrophage, dendritic cell (DC), neutrophil, T cell,
or B cell] as well as between single cells of seemingly
homogeneous immune cell populations.66 Below, we
discuss several prominent examples in which network
analysis methods have been applied to varying types
of experimental datasets to provide new insights into
the innate immune response.

Transcriptional/Gene Regulatory Networks
Most studies utilizing network biology approaches to
elucidate innate immune responses have focused on
deciphering transcriptional networks and GRNs
controlled by TLRs,67 very recently extending
to include other innate immune sensors. This is
because many functional responses to TLR lig-
ands can be readily recapitulated in vitro using
bone marrow-derived macrophages and DCs. Early
studies utilized microarray-based transcriptome
analysis over multiple time points and clustering of
genes with similar expression kinetics.68–70 In one
such example, gene clusters from TLR4-stimulated
macrophages were mined for both induced TFs and
for cis-regulatory elements68 to identify a prominent
group of genes regulated by activating TF 3 (ATF3).
Network analysis and visualization predicted ATF3
as part of a transcriptional complex that also contains
members of the nuclear factor (NF)-𝜅B family of
TFs. Probable ATF3-associated TFs were selected and
potential transcriptional targets of the ATF3 regula-
tory complex were identified based on enrichment of
ATF3, NF-𝜅B, and associated TF-binding sites within
close proximity. Using this method, 30 target genes

Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
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FIGURE 2 | Intracellular molecular networks in innate immunity. Transcriptional, translational, spatial, and functional networks controlling innate
immune responses are shown. Pathogens present diverse ligands (1) that are sensed by single or combinations of innate sensors including but not
limited to Toll-like receptors (TLRs), C-type lectin receptors (CLRs), Nod-like receptors (NLRs), RIG-like receptors (RLRs), and AIM2-like receptors
(ALRs) (2). Such sensing triggers differential downstream signaling (3), which in turn can be promoted by preexisting compartmentalization of innate
sensors (e.g., TLRs on the plasma membrane or endosomes) or their spatial relocation to membrane-bound organelles (e.g., relocation of RIG-I and
NLRP3 to mitochondria) that provide suitable platforms for optimal assembly of signaling complexes (4). This leads to activation and/or production of
downstream mediators (5) such as transcription factors (e.g., NF-𝜅B, AP-1, and IRFs) that translocate to the nucleus to promote transcription of target
genes (6) followed by their translation, appropriate protein folding, and post-translational modifications (7 and 8). Cellular proteins may localize to
specific subcellular compartments based on their domain sequences, post-translational modifications, or association with suitable chaperones (9).
Intercellular and intracellular heterogeneity is an important regulator of the innate response (10). Rewiring of the above connections can be expected
depending upon the nature of the immune cell encountered (e.g., macrophage, dendritic cell, neutrophil, T cell, or B cell) as well as variations
between single cells of seemingly homogeneous immune cell populations (e.g., heterogeneity due to cell state, stochastic nature of molecular
interactions, and/or subtle differences in gene or protein expression). Dotted lines indicate indirect connections where the nodes may be separated by
more than one degree(s) of freedom.

were identified, many of which were validated using
a ChIP-to-chip approach whereby ATF3-bound DNA
was assessed for enrichment of selected genes.

Scanning for TF-binding sequence motifs and
gene expression dynamics have since been used to
elucidate macrophage transcriptional networks on a
larger scale. In one study, time-lagged expression cor-
relation between TF genes and clusters of potential

target genes was used to infer a network of associa-
tions in response to multiple TLR agonists.70 As an
independent measure of association, the promoters of
differentially expressed genes were scanned for the
presence of TF-binding motifs. A combined P-value
based on both the time-lag correlation and motif scan-
ning was determined and TF–gene cluster pairs were
ordered based on this combined P-value to construct

Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
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a regulatory network that was further expanded
through the inclusion of TF interaction data from
publicly available sources. The inferred network of
associations between TF genes and co-expressed gene
clusters was validated with targeted ChIP-on-chip
experiments, and yielded insights into the macrophage
activation program. One of the major findings was
the identification of a novel regulator, TGFB-induced
factor homeobox 1 (Tgif1), which was only detected
using the integration of both expression data and pro-
moter scanning evidence. In another example, a com-
bination of gene expression analysis and TF-binding
site motif scanning algorithms was used to infer a net-
work of associations between TFs and target genes in
macrophages activated with dsRNA.71 This network
of associations predicted that a member of the fork-
head family of TFs, FOXO3, acts as a negative regu-
lator of the type 1 interferon (IFN) response, a linkage
that was confirmed experimentally using FOXO3-null
macrophages. Genome-wide ChIP-seq analysis iden-
tified the IRF7 gene as one of the critical targets of
FOXO3; this observation was functionally validated
by gene deletion studies that in turn identified FOXO3
as a negative regulator of IRF7 transcription. FOXO3,
IRF7, and type 1 IFN were further demonstrated to
form a coherent feed-forward regulatory circuit that
was experimentally validated by ChIP analysis, in
vitro functional assays, and in vivo during vesicular
stomatitis virus lung infection of FOXO3 KO and
IRF7 KO mice. Together, these findings established the
FOXO3–IRF7 regulatory loop as a critical circuit that
optimizes the antiviral response to achieve the appro-
priate balance between host defense and unchecked,
potentially host-detrimental inflammation.

The study of transcriptional networks has
also yielded insights into human responses to PRR
ligands (pathogen-associated molecular patterns,
PAMPs) in vivo. In one study, microarray data were
generated from peripheral blood leukocytes iso-
lated from human subjects at various times after
injection of bacterial endotoxin.72 Using Ingenuity
Systems Inc. knowledgebase and network analysis
tool, the authors constructed a prototypical inter-
action network in blood leukocytes containing 292
genes and their direct interactions, and a global
endotoxin-induced gene interaction network of 1556
genes. This approach was used to identify changes
in functional modules at different times during an
endotoxin-induced immune response. Using the same
human microarray dataset, a more recent study used
network component analysis to derive a dynamic
regulatory network including 10 TFs, 99 target genes,
and 149 regulatory interactions.73 By incorporat-
ing regulatory network information, this method

facilitated prediction of TF activities over time and
allowed for the identification of novel co-regulated
gene clusters and target genes within these clusters.

The integration of genome-wide mRNA expres-
sion data with network perturbation using methods
such as RNAi knockdown has further facilitated con-
struction of biologically relevant innate immune tran-
scriptional networks. One particularly extensive study
employed a combination of gene expression and RNAi
perturbation to reconstruct a transcriptional network
controlling responses of DCs to distinct PAMPs.74

Specifically, gene expression profiles obtained at differ-
ent time points poststimulation with PAMPs were used
to identify candidate regulators that were then per-
turbed using lentiviral shRNA knockdown to deter-
mine how these regulators affect the target genes.
This overall approach identified 2322 significant reg-
ulatory connections and revealed the functions of
125 TFs, chromatin modifiers, and RNA-binding pro-
teins. These data enabled the construction of a net-
work model consisting of 24 hub regulators and 76
fine-tuners that help to explain how pathogen-sensing
pathways achieve specificity. Non-negative matrix fac-
torization was used to define two major states induced
by the PAMPs, namely ‘inflammatory’ versus ‘antivi-
ral’ programs as well as distinct subnetworks for each
state. Within each subnetwork, the authors found the
predominance of multiple feed-forward circuits. The
network reconstruction strategy utilized in this study
has been reviewed by the authors.75 Recently, the same
group has developed a high-throughput ChIP method
to reconstruct the genome-wide dynamic binding net-
work of 25 TFs and 4 chromatin marks at four time
points following LPS stimulation of DCs. Analysis of
over 180,000 TF–DNA interactions revealed a tem-
porally multilayered architecture of TF networks.76

Coupling these two approaches, i.e., unbiased pertur-
bation of TFs74 with genome-wide binding of the same
factors,76 will be a robust approach for systematically
elucidating the GRNs controlling the innate immune
response.

In addition to construction of GRNs underly-
ing the innate immune response, integrative systems
approaches based on genome-wide RNAi screens
have been used to identify useful interventions in
infection. One especially exhaustive study employed
genome-wide RNAi screening to identify host factors
required for influenza virus replication as potential
targets for therapeutic intervention.77 An arrayed
siRNA library targeting more than 19,000 human
genes was used to transfect human lung epithelial cells.
Data from two independent screens analyzed using
an integrative analysis approach, including redundant
siRNA activity, interactome, and ontology-based

Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
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analysis, identified 295 host cell factors required for
early-stage influenza virus replication. Protein inter-
action data derived from Y2H databases, including
published datasets,39,78 Hynet and curated molec-
ular interaction databases including Reactome,
BIND, HPRD, and MINT (Table 1), were used to
construct a host–pathogen interaction (HPI) map
depicting associations between the identified host
factors, viral-encoded proteins, and other cellular
proteins. The integration of RNAi and interac-
tome datasets produced a network containing 181
confirmed host cellular factors that mediate 4266
interactions between viral or cellular proteins, and
act as rate-limiting ‘hubs’ in cellular pathways or
processes required for influenza virus replication. A
number of candidate genes involved in influenza virus
replication were biologically validated by experiments
showing that depletion of these genes resulted in
reduced viral gene expression. Further functional
assays were performed to identify factors specifically
involved in virus entry or postentry viral replication.
Finally, small-molecule inhibitors of several host
factors including vATPase (vacuolar ATPase) and
CAMK2B (a ubiquitously expressed calcium sensor
that regulates diverse cellular functions) were shown
to antagonize influenza virus replication provid-
ing new opportunities for the development of host
factor-directed antiviral therapies.

Considerable interest has also focused on the
analysis of GRNs that direct cellular diversity and
cell fate decisions within the innate immune system.
A combination of ChIP-on-chip data and analysis
of TF-binding sites has been used to demonstrate a
regulatory network involving the TFs PU.1 and Gfi1
that orchestrate innate (macrophage) and adaptive (B
lymphocyte) immune cell fates in multipotential pro-
genitors in vivo.79 This network was experimentally
validated in vitro and in vivo by following B-cell devel-
opment in Gfi1 knock out and PU.1 heterozygous
animals. The same group has previously assembled
and mathematically modeled a GRN that controls
macrophage versus neutrophil cell fate choice and that
accounts for the onset and resolution of mixed lineage
patterns during cell fate determination.80 Another
study has used a network perturbation approach to
investigate causal influences or crosstalk between sig-
naling modules involved in the cytoskeletal response
of neutrophils to chemoattractant.81 More recently,
network analyses have been employed to reveal a
spectrum of macrophage activation states extending
the current M1- versus M2-polarization model.82

The authors generated a dataset of 299 macrophage
transcriptomes by stimulating macrophages with
diverse activation signals including PRR ligands,

cytokines, and metabolic cues. Network analyses
revealed common transcriptional regulators associ-
ated with all types of macrophage activation states
as well as regulators related to stimulus-specific pro-
grams. Finally, the Immunological Genome Project
(ImmGen) consortium database has been utilized to
elucidate transcriptional regulatory networks that
control lineage commitment and functional diversifi-
cation of DCs (DC progenitor cells, lymphoid-tissue,
nonlymphoid-tissue DCs, and migratory DCs) across
the murine immune system83 (Table 1). Thus, net-
work analysis of transcriptional and ChIP data has
also aided in identification of GRNs underlying
distinct immune cell phenotypes and cell states in
homeostatic and activated conditions.

Genome-wide mRNA expression profiling fol-
lowed by network analysis has also been applied
to study cell fate determination within the adaptive
immune system. One such study focused on elucidat-
ing the molecular mechanisms by which naïve T cells
develop into effector Th17 cells.84 Network analysis
of transcription profiles from wild-type and IL-23R
KO T cells following in vitro exposure to Th17 polar-
izing conditions (TGF-𝛽1 and IL-6 with or with-
out IL-23) identified serum glucocorticoid kinase 1
(SGK1), an inducible salt-sensing kinase, as an essen-
tial node downstream of IL-23 signaling. A curated
database of PPIs was used to construct a network
model that connects known proteins of the IL-23R
signaling pathway to the TFs whose function is dysreg-
ulated in IL-23R KO cells. The network’s nodes were
ranked based on a centrality measure, i.e., the frac-
tion of IL-23R-affected TFs downstream of that node
in the network. SGK1 emerged as the highest rank-
ing node suggesting that it acts both as a transcrip-
tional target of IL-23R signaling and as a kinase that
may mediate the transcriptional effects of the pathway.
These predictions were tested by examining the dif-
ferentiation and maintenance of Th17 cells in SGK1
KO mice, as well as in mice lacking SGK1 specifically
in IL-17-producing CD4+ T cells. The results showed
that SGK1 was indispensible for IL-23R-dependent
stability and maintenance of Th17 cells. Furthermore,
mice fed a high salt diet (SGK1 is salt-inducible)
showed a marked increase in the frequency of Th17
cells in the gut and developed a more severe form of
experimental autoimmune encephalitis than mice fed a
normal diet. This increased severity was dramatically
reduced in SGK1-deficient mice, confirming the role of
SGK1 in induction of pathogenic Th17 cells.

Another emerging area of focus is the elucida-
tion of GRNs established during cellular reprogram-
ming to derive clinically relevant cells for regenerative
medicine. A network biology platform called CellNet
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has recently been developed to quantify how closely
GRNs of in vitro engineered or reprogrammed cells
resemble those of their in vivo counterparts, diagnose
aberrant GRNs, and prioritize candidate transcrip-
tional regulators to enhance cellular engineering.85,86

The authors analyzed expression data from 56 pub-
lished reports and using CellNet to compare the
GRNs of in vitro engineered cells with those of
their target cell types in vivo, and they found that
cells derived via directed differentiation from embry-
onic stem cells more closely resemble their in vivo
counterparts than products of direct conversion by
ectopic expression of lineage-specific TFs. They fur-
ther discovered that directly converted cells fail to
adequately silence expression programs of the starting
population and that the establishment of unintended
GRNs is common to virtually every cellular engi-
neering paradigm. CellNet was used to spot aberrant
regulatory networks and predict candidate transcrip-
tional regulators that could be targeted for improving
cell derivations. Experimental testing of these predic-
tions showed that as predicted, improved B-cell to
macrophage conversion, both transcriptionally and
functionally, was observed by knocking down the
B-cell regulators Pou2af1 and Ebf1. In addition, Cell-
Net revealed an unexpected intestinal program con-
trolled by the master regulator Cdx2 during conver-
sion of fibroblasts into induced hepatocytes (iHeps),
and experimental validation of this prediction showed
long-term functional engraftment of mouse colon by
iHeps, thereby establishing their broader potential as
endoderm progenitors and demonstrating direct con-
version of fibroblasts into intestinal epithelium.

Signaling Networks
While the accessibility of gene expression datasets gen-
erated from PAMP-stimulated cells has contributed to
the prevalence of large-scale transcriptional networks,
elucidation of signaling networks demands incorpo-
ration of protein expression and PPI data into net-
work analysis methods. This has been accomplished
by advances in MS, which have allowed for acquisition
of extensive proteomic datasets. In one such study,
the authors systematically explored the signal trans-
duction pathways responsible for regulating cellular
antiviral defense and IFN production by using a com-
prehensive proteomic approach to assess the human
innate immunity interactome controlling production
of type 1 IFN.87 In a pull-down approach, 58 genes
with known involvement in the regulation of type
1 IFN were used as baits for interacting proteins; a
total of 264 complexes were purified and analyzed by
MS.87 Using these data, the authors mapped a network

of 260 interacting proteins and 401 unique interac-
tions. Many of the interactions not present in existing
BioGRID or STRING databases were independently
validated by immunoprecipitation and Cytoscape was
used to visualize the interconnectivity of the network
and combine the interactions into a single map. Func-
tional consequences of these interactions on antiviral
responses were assessed using overexpression and/or
RNAi analyses. Dynamic changes in this interaction
network were observed upon stimulation with several
distinct PAMPs, revealing nodes of potential receptor
crosstalk.

Integrative systems approaches combining
genomic, proteomic, and network perturbation
methods have yielded further insights into complex
signaling circuits. A study combining transcriptional
profiling, lentiviral shRNA-mediated knockdown,
small-molecule perturbations, and SILAC-based
quantitative phosphoproteomics, uncovered 35 sig-
naling regulators, including 16 known regulators,
involved in the TLR4 response of mouse DCs.88 In
particular, they identified CRKL, a tyrosine kinase
adaptor, as an important modulator, and polo-like
kinases 2 and 4 as critical activators of the antiviral
response. More recently, the same group has used an
integrative approach to identify genes involved in the
cytosolic DNA-sensing network.89 They selected 809
candidates after transcriptomic and quantitative pro-
teomic analyses (protein–protein and protein–DNA
interactions) and perturbed the candidates using
high-throughput RNAi and small-molecule inhibition
to functionally validate the network. These networks,
generated from integrated datasets, provide a major
resource for immunologists to mine and identify
novel players in signaling pathways and can aid in the
construction of comprehensive computational models
to generate predictions of the innate response.

Spatial Networks
Activation of signal transduction networks by extra-
cellular or intracellular PRRs is encoded not only into
transcriptional networks, GRNs, and PPI networks
but also into spatial patterns of activation and relo-
cation of numerous proteins. Many proteins are tar-
geted with exquisite precision to specific locations in
the cell, or undergo rapid directed changes in local-
ization that influence the outcome of or are essential
to signal generation. In many cases, innate sensors
and/or adaptors must relocalize to specific cellular
compartments or intracellular membranes for optimal
assembly of signaling complexes and effector func-
tion. For instance, TLRs signal from the plasma mem-
brane or endosomes90; RIG-I, MDA-5, and NLRP3
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relocalize to mitochondria upon activation via asso-
ciation with MAVS91–94; and NOD1 and NOD2 sig-
nal from endosomes.95–97 The nature of subcellular
association can also influence the quality and dura-
tion of the response. This has been observed in the
context of viral infection, where peroxisomal MAVS
induces rapid IFN-independent expression of defense
factors that provide short-term protection, whereas
mitochondrial MAVS activates an IFN-dependent sig-
naling pathway with delayed kinetics, which ampli-
fies and stabilizes the antiviral response.98 Thus, there
is increasing evidence that organellar structures and
intracellular movement are integral to the develop-
ment of an effective immune response. Integration
of this additional dimension into network analysis
and visualization methods through development of
appropriate tools should allow for a more holistic
representation of innate networks as well as prediction
of emergent properties that arise from the concerted
action of these networks.

Functional Networks
Most studies discussed thus far have assessed
responses to single, purified PRR ligands; however,
this is a scenario far from biological reality. During
a natural infection, pathogens present a cocktail of
ligands that activate diverse cell surface-associated
and intracellular PRRs to initiate combinatorial
signaling cascades99 (Figure 2). Crosstalk between
these signaling cascades gives rise to multifaceted,
pliable, and functional networks in which dynamic
interactions between the underlying components
dictate the quality, magnitude, and duration of the
ensuing host response. In this context, each ‘signaling
pathway’ linked to a PRR-innate sensor is in reality
a much more extensive multicomponent network
comprised of several nodes representing constituent
signaling molecules and edges representing the spatial,
temporal, and functional connections between these
constituents. The existence of such a multifactorial
network composed of multiple innate sensors with
some degree of functional redundancy may enable
macrophages, DCs, and other immune cells to detect
pathogens or danger with greater precision resulting
in robust synergistic responses. For instance, syner-
gistic inflammatory responses have been observed
upon simultaneous stimulation of myeloid cells with
different TLR ligands,100 TLR and NLR ligands,101

and TLR and CLR ligands.102 Crosstalk can also
occur between PRRs and other receptors expressed
by immune cells. For instance, dual B-cell receptor
and TLR and/or NLR engagement can fine-tune
functional B-cell responses.103,104 Similarly, crosstalk

between PRRs and phagocytic receptors is indicated
by the observation that phagosomal TLR agonists
enhance major histocompatibility complex (MHC)
class II–mediated antigen presentation.105 Addition-
ally, synergy between PRRs and cytokine receptors
can be inferred from the observation that IFN-𝛾
augments TLR-induced gene transcription.106 Finally,
transcriptional induction of some PRRs by micro-
bial signals allows for sequential triggering of PRRs
that may permit greater accuracy in mounting a
response commensurate to the nature and extent of
the threat while preventing excessive inflammation.
For instance, triggering of TLRs is critical for priming
NLRP3 expression and subsequent inflammasome
activation.107 Thus, functional innate responses result
from crosstalk within and between PRR, cytokine,
phagocytic, and other pathways upon recognition
of multiple antigens simultaneously presented by a
microbe. Assessment of responses to combined rather
than single stimuli is therefore an essential parameter
that should be incorporated in the study of these
complex signaling networks engaged by pathogens.

INTERCELLULAR AND
ORGANISMAL NETWORKS

The existence of several different types of immune
cells and their diverse cellular states lends addi-
tional levels of complexity that make holistic anal-
ysis of the immune system a challenging task. New
advances in single-cell technologies such as single-cell
microfluidics,108,109 transcriptomics,110 quantitative
proteomics,111 multiparameter flow cytometry, mass
cytometry,112 and live cell imaging113 are allowing
researchers to understand how immune populations
may generate and leverage cellular heterogeneity to
achieve the range and plasticity required during
dynamic processes such as cellular differentiation or
host defense.66,114 One study combined molecular
profiling data and database mining approaches to
elucidate intercellular communication networks that
dictate blood stem cell fate decisions and showed
that intracellular and intercellular networks, and their
interactions, are dynamic as differentiation occurs
over time.115 Therefore, the nominal definition of a
cell fails to convey the dynamic nature of cellular
states, as intercellular communications change intra-
cellular networks that define cellular behavior.

Given the dynamic nature of cell–cell interac-
tions, there has been a growing interest in representing
and modeling complex intercellular interactions in
multicellular systems as networks with the ultimate
goal of understanding and predicting their global
behavior in a systematic and scalable way.116 Several
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large-scale analyses to describe the structure and
dynamics of intercellular networks have been per-
formed, some in the context of the immune sys-
tem. One such study probed the cytokine-mediated
connections between cells of the immune system
(immune cells), parenchymal and stromal cells within
tissues (body cells), and between ‘immune’ and ‘body’
cells.117 This cytokine network was constructed using
available databases and revealed a tiered connectivity
between immune cells, whereas body cells lacked such
a connectivity pattern. The structural motifs of the
immune cytokine network resembled those present in
the social and World Wide Web superfamilies owing to
the presence of clique motifs. The apparently greater
degree of interconnectivity among immune cells, rela-
tive to other nonimmunological physiological systems
as evidenced by this particular study, highlights the
possible particular importance of visualizing immune
responses as networks at the cellular level. When inter-
cellular interactions are investigated in vivo, in the
context of biological systems, the three-dimensional
positioning of cells within tissues must be also con-
sidered, just as intracellular physical positioning of
network components is crucial to efficient signaling,
as described above. In a recent study of intercellular
metabolic networks in the human brain, consideration
of the tissue microenvironment in the model gener-
ation process added an additional layer of informa-
tion that rendered networks more representative of the
in vivo experience.118

As a result of extensive studies involving sophis-
ticated static and live imaging techniques combined
with more traditional immunological assays, the
murine lymph node (LN) is an optimal example of a
tissue environment in which the many dimensions of
immunologically relevant cellular interactions have
been studied in great detail.119 Here, we provide an
illustrative example of an innate immune response
network in the LN. The lymphatic system is a network
of open-ended structures that collect interstitial fluid
that even under normal conditions extravasates into
tissues.120 Interspersed along lymphatic vessels are
LNs. These complex structures are classically consid-
ered the site where adaptive immune responses are
initiated. However, it has recently been shown that a
multicellular innate immune network is at play in the
LN protecting the host from systemic dissemination of
lymph-borne organisms.121 In Figure 3 we graphically
display this complex biological system in parallel with
a network rendition of the intercellular connections.
Under steady-state conditions (Figure 3(a)) a hetero-
geneous population of innate immune cells is located
in close proximity to the macrophages that line the
subcapsular sinus, where lymph drains. The physical

proximity of the innate cells and macrophages allows
for efficient intercellular communication via secreted
cytokines following a perturbation (i.e., infection with
an intracellular or extracellular bacterium, e.g., as
seen in Figure 3(b) and (c)). In the network rendition,
we emphasize the spatial positioning requirements for
effective intercellular interactions by only highlighting
those nodes that can display a potential connection
(dotted line) with the central node and graying out
the others. Figure 3(b) and (c) represents the system
after infection with an intracellular or extracellular
organism, respectively. The sequence and timing of
events is indicated by the gradual color progression
from light gray (earlier events) to black (later events)
and the thickness of the edges indicates the relative
contribution of a particular pathway. For example,
following infection with an extracellular bacterium
(depicted in Figure 3(c)), the main pathway that
is activated involves IL-1𝛽 release from the sub-
capsular sinus macrophages, which in turn recruits
neutrophils to the LN, culminating in containment of
the infection.

Cellular migration between tissues is the next
level in further defining dynamic networks as they
apply to complex biological communities. Upon
immune challenge in the periphery, antigen can drain
freely or be actively transported into the draining
LN via afferent lymphatics. Here, antigen processing
and presentation by professional antigen-presenting
cells (APCs) takes place. T lymphocytes constitu-
tively circulate through lymphoid organs, entering
LNs through specialized venules and then migrating
within the LN in search for cognate antigen. This
migratory pattern is directed by encounters with
APCs and by the stromal network in the LN.122,123

Upon cognate antigen recognition, as during an
immune challenge, T-cell activation and prolifera-
tion occur. T cells exit the LN via lymphatics and
enter the systemic circulation. Effector T cells then
have the ability to home to sites of infection. It has
been suggested that T cells receive instructive signals
that direct them preferentially to certain sites of
inflammation during the initial phase of priming.124

Once in the tissue, activated T cells carry out their
effector function, in part through the secretion of
cytokines.

Visualization of a network that is dynamic
in four dimensions poses several challenges. In
Figure 4(b), we depict a complex network of temporal
and spatial variations in organization representing
the biological system in Figure 4(a). Each node in
this complex environment is an active and dynamic
multifaceted network on its own. For example, the
naïve T-cell node must contain information about the
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FIGURE 3 | A multicellular innate immune network in lymph nodes. An innate immune response circuit in the lymph node (LN) shown as a
biological system (left panels) and a network (right panels). Left panels: (a) Innate effector cells are prepositioned in proximity to subcapsular sinus
macrophages under steady-state conditions. (b) Upon exposure to intracellular bacteria draining to the LN through the lymphatic system,
macrophages are activated, release cytokines, and engage innate effector cells. Their activation, in turn, leads to cytokine production that enables the
macrophages to contain the infection. (c) Exposure to extracellular organisms also leads to macrophage activation. Production of IL-1𝛽 leads
indirectly to neutrophil recruitment from the circulation, which leads to containment of the infection. Right panels: Network rendition of the
biological system. Dotted edges in (a) represent potential connections. The color progressions of edges from light gray to black in (b) and (c) indicate
the temporal progression of events. Thickness of the edges indicates the relative contribution of a particular connection.

migratory behavior of the cells, which in itself is a
set of intracellular molecular events that allow the
cell to interact with the extracellular matrix.119,123

T-cell migratory behavior influences the likelihood of
antigen encounter in the LN.125,126 Therefore, there
must also be information on intercellular interac-
tions between T cells and APCs in the LN, as this
interaction allows for the activation of T cells in
the presence of cognate antigen. Additionally, each
edge in this network represents an intricate set of
molecular events, such as a change in the state of
a cell (edge between naïve T cell and activated T
cell) or in migration of a cell to distant organs (edge
connecting blood to skin). We use different colors

to indicate behavior under steady-state conditions
(red arrows in Figure 4(b)) and make use of the color
progression to indicate temporally sequential events
(light gray to black). With the help of this example,
we delineate the response of the host immune system
as an interaction network, representing dynamic,
spatial, and contextual interactions between diverse
immune cells. As we learn more about the link
between structure and function and the temporal
evolution of immune responses, one must develop
the tools to integrate these additional dimensions of
information into network renditions or predictions
of complex biological systems. A final layer of com-
plexity can be added when one seeks to represent the
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FIGURE 4 | Illustration of an organ-level network in adaptive immunity. (a) Generation of an adaptive immune response after exposure to an
antigen in the periphery represented as a biological system. Under steady-state conditions (a, left), T cells enter lymph nodes (LNs) via high
endothelial venules (HEVs) and then migrate within LNs in search for antigen. They then exit the LN via efferent lymphatics and eventually return to
the systemic circulation. Exposure to antigen in the periphery (a, right), for example, through skin injury, leads to either active transport or passive
drainage of antigens into the draining LN. Here, antigens can be taken up, processed, and presented by LN-resident antigen-presenting cells (APCs)
on major histocompatibility complex (MHC) molecules. Upon recognition of cognate peptide–MHC complex, naïve T cells are activated, proliferate,
and subsequently exit the LN via lymphatic conduits. The lymphatic system then connects to the venous circulation and therefore activated T cells
have access to perfused peripheral tissues. Activated T cells migrate within the affected tissue and upon receiving appropriate signals secrete effector
cytokines. (b) Network rendition of the biological system in (a). Red arrows on the left hand side of the panel represent circulation of naïve T cells
within the lymphatic and circulatory system. Dotted edges are potential connections. The color progression from light gray to black indicates the
temporal progression of events in the setting of exposure to a pathogen in the periphery leading to the generation of an adaptive response in the
draining LN, culminating in the arrival of activated T cells at the site of injury. B, B-cell follicle.

interaction between the networks of a multiscalar
host and an invading pathogen discussed in the next
section.

A NETWORK PERSPECTIVE OF HPIs

Despite significant progress in medicine, infectious
diseases such as HIV/AIDS, tuberculosis, malaria,
and hemorrhagic fever, continue to remain major
killers worldwide. Several pathogens can modulate
host defense mechanisms to their advantage and
actively manipulate the host immune response by
producing a variety of virulence factors, thereby
influencing the outcome of infection.127–129 Similarly,
host factors can influence the pathogen; for instance,
host-derived lysophospholipids can enhance secretion

of a key virulence factor flagellin from Salmonella,130

and IFN-𝛾 stimulates the transcription of Pseu-
domonas aeruginosa virulence factors.131 A deeper
understanding of the underlying pathophysiology
and molecular interactions between the host and
pathogen is therefore central to overcoming the chal-
lenges posed by infections. From a network biology
perspective, HPIs can be conceptualized as crosstalk
between two molecular networks: one corresponding
to the host and the other to the pathogen. These
molecular networks have specific points of inter-
action and quite often pathogen proteins mimic
eukaryotic PPI domains to invade the host PPI net-
work. For example, the nonstructural protein 1
(NS1) of influenza A virus contains domains that
bind to SH2 and SH3 domains of the regulatory
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subunits of host PI3K.132 Other studies have shown
that interaction between host and influenza A PPI
domains can determine the virulence of the virus.133

Similar examples of host molecular mimicry exist in
bacteria; for instance, interaction of the Escherichia
coli type III effector protein espF with human sorting
nexin 9 protein (SNX9) induces host membrane
remodeling.134 These studies suggest that interactions
between host and pathogen molecular networks are
not random but rather well orchestrated, directed
events that can influence both host and pathogen
behavior. A holistic view of HPIs therefore requires
a systematic and comprehensive study of host and
pathogen molecular networks separately and in
combination.

The different databases available for host
genome-scale PPIs are reviewed in detail in section
Molecular Networks. As virus genomes are much
smaller, genome-scale PPIs were first generated in
E. coli bacteriophage T7135; this PPI consisted of
only 25 viral-protein interactions. Subsequently,
genome-scale PPI maps have also been generated
for other viruses, such as hepatitis C,136 vaccinia,137

herpes,138–140 and SARS-associated coronavirus.141

All these studies used Y2H experiments to identify the
interactions. Most viruses, except herpesviruses, have
fairly small PPIs. For two members of the herpesvirus
family, i.e., Kaposi sarcoma-associated herpesvirus
and varicella-zoster virus, a comparatively large num-
ber of PPIs, 123 and 173, respectively, have been
identified. Topological analyses of PPI networks of
several viruses have revealed that nodes in viral PPI
networks tend to form a single and highly connected
module with many hubs and few peripheral nodes.139

This observation is in striking contrast to the network
topology of eukaryotic PPIs that have few hubs and
several peripheral nodes.62

Compared to viral PPI networks, bacterial PPI
networks are much larger and more complex. PPI
networks have been generated for several bacte-
ria including Helicobacter pylori,38 Campylobacter
jejuni,142 Treponema pallidum,143 Mycobacterium
tuberculosis,144 and Bacillus subtilis.145 Several
studies have identified PPI networks in E. coli, a
well-characterized Gram-negative bacterium, using
experimental and computational approaches.40,146

The E. coli PPI network is one of the largest bacterial
networks currently available with more than 10,000
interactions.147 These experimental PPI networks
have been most widely generated using two methods,
namely Y2H systems and tandem AP-MS. Topological
analyses of bacterial PPI networks have revealed that
they follow power-law distributions, i.e., they have
few hubs and many peripheral proteins.62 Similar

to bacterial PPI networks, protozoan pathogen PPI
networks as in the case of Plasmodium falciparum148

also follow scale-free distribution.147

Collection of HPI data in a high-throughput and
systematic way has become available only in recent
times. Several web-based resources are currently avail-
able that compile HPI data from different sources,
including high-throughput experiments, literature
curation, and computational predictions. A list of
some of the widely used resources and their descrip-
tions are included in Table 3. All these resources
have come up with their knowledge base, which
stores data in a systematic format and provides tools
to query the database and display results through
their web interface. Some of these applications also
provide sophisticated tools to visualize interactive
HPI networks. As most of the databases mainly rely
on similar sources, the results are expected to over-
lap. However, some discordance between the results
is not completely unexpected. Some databases are
tailored for host- and pathogen-specific information.
For example, GPS-Prot156 stores only human–HIV
interactions, while PATRIC153 is a repository of
bacterial interactions with many host species. A few
recent studies have created meta-databases, such
as PHISTO,149 PHI-base,150 and HPIDB,151 that
combine interactions from a large number of host
and pathogen species. Topological analysis of proteins
involved in interaction of host and pathogen networks
indicates that both bacterial and viral pathogens in
general target hub and bottleneck proteins in host
networks.147 These target proteins are associated with
processes that help propagate infection or evade host
defense mechanisms, for instance, evasion of apopto-
sis, inhibition of innate immunity, and reorganization
of the actin cytoskeleton.157

Computational predictions of HPI are useful
when experimental data are unavailable, incomplete,
or noisy. Several types of computational approaches
have been used for this purpose; for instance, machine
learning-based approaches have been applied for
automated mining of scientific literature to predict
HPIs.158,159 Although these methods are cheap and
scalable, their performance should be carefully mea-
sured by estimating sensitivity and specificity. Interac-
tions between human proteins and several pathogen
proteins have also been predicted based on inter-
logs, an approach that extends protein interactions
based on sequence homology and orthology.160,161

Because proteins usually interact through specific
domains, algorithms for predicting domain–domain
interactions can help identify potential PPIs.162–164

For instance, computational prediction of short linear
sequence motifs common to both HIV-1 and human
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TABLE 3 Publicly Available Host–Pathogen Interaction Databases and Tools

Database Website Description

PHISTO149 http://www.phisto.org This meta-database combines interaction data from different sources
using computational tools and currently contains ∼2400
interactions between human and 300 pathogen strains (247 viral,
45 bacterial, 3 fungal, and 5 protozoan). The web interface also
allows for network analysis and visualization.

PHI-base150 http://www.phi-base.org A comprehensive database containing experimentally verified
pathogenicity, virulence, and effector genes from bacterial, fungal,
and oomycete pathogens, which infect a broad range of hosts, such
as plant, vertebrate, and fungal species. The data can be easily
downloaded and visualized with network-rendering tools. The
current version contains more than 4000 interactions between 166
pathogens and 110 hosts.

HPIDB151 http://agbase.msstate.edu/hpi/main.html A host–pathogen interaction (HPI) meta-database that contains
22,841 unique interactions between 49 hosts and 319 pathogens
obtained by combining interspecies interaction data from six
publicly available databases, i.e., BIND, MINT, PIG, GENERIF,
REACTOME, and IntAct. The website does not provide network
visualization, but the interaction network information can be
downloaded and visualized using tools such as Cytoscape.

Phinet152 http://www.phidias.us/phinet/ A HPI network visualization tool that uses PHIDIAS knowledgebase
created by combining manually curated data with existing
databases, such as KEGG and MiNet. PHIDIAS database currently
includes 100 pathogens, including 58 bacteria, 37 viruses, 2
parasites, and 3 fungi. The multilayered and interactive network
rendition also provides detailed information on cellular localization
of host–pathogen proteins and complexes.

PATRIC153 http://www.patricbrc.org A database that provides diverse types of data and bioinformatic tools
specifically for bacterial pathogens. Host-bacterial protein–protein
interactions (PPIs) can be downloaded and viewed using interactive
network diagrams.

VirhostNet154 http://pbildb1.univ-lyon1.fr/virhostnet/login.php A manually curated database of high-confidence virus–virus and
human–virus PPIs for 180 distinct viral species. It also provides
additional information about the proteins, such as structural and
functional annotation, gene ontology term, pathway membership,
and INTERPRO domain.

CAPIH155 http://bioinfo-dbb.nhri.org.tw/capih A web-based tool for comparison of PPIs between HIV and four
different hosts, i.e., human, chimpanzee, rhesus macaque, and
mouse. CAPIH can highlight host-specific interactions due to
genetic differences and displays the results, including HPI networks,
through interactive Java Applets.

GPS-Prot156 http://www.gpsprot.org A meta-database that integrates PPI data between human and HIV
from three publicly available databases, including MINT, BioGRID,
and HPRD. It also provides Java Applet-based interactive tool for
interactive visualization of HPI networks.

proteins has provided the basis for understanding the
interaction with and modification of the host PPI net-
work by the virus.165,166 To improve computational
predictions, pipelines can be created that include
combinations of the above approaches and impose
additional constraints.157 For example, interaction
between a pair of host and pathogen proteins can be

predicted based on availability of interacting domain
pairs from relevant databases. Once all such pairwise
interactions have been predicted, the results can be
filtered to retain only hub genes in the host PPI
network, as these genes are the ones most likely to
be targeted by pathogen proteins to gain access to the
host network(s).
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CONCLUSIONS AND TRANSLATIONAL
IMPLICATIONS

The immune system is particularly well suited for
the application of network reconstruction methods.
From dynamic molecular interactions underlying
intracellular signaling pathways, controlled by GRNs
and also regulated by epigenetic modifications, to
intercellular crosstalk between the many distinct
immune cell subtypes, organization of cells into tis-
sues and organs, and finally, to the overall response
of an organism, there are multiple hierarchical levels
that are amenable to network-based modeling and
visualization. Although we are still far from the even-
tual goal of applying network-based approaches to
the construction of comprehensive predictive models
of the immune response to diverse perturbations,
the examples described in the preceding sections
highlight how systems-level network analyses have
accelerated our understanding of molecular interac-
tions underlying the immune response. Large-scale
‘omics’ approaches need to be combined with recent
advances in computational biology and mathematical
tools to allow for the generation of comprehensive
quantitative and predictive network models across
multiple scales of organization in the immune system.
Iterative refinements of such dynamic models through
experimental validation should eventually allow us to
simulate immune behavior and infer responses that
cannot be predicted a priori.

In addition to deciphering networks that under-
lie the immune response, the field of immune network
biology also holds promise for unraveling genetic and
molecular networks that drive complex human dis-
eases, and drug-target networks that can help power
new drug discovery. Unbiased genetic approaches,
such as genome-wide association studies (GWAS),
have uncovered many genetic loci and processes that
are dysregulated in human immune disorders.167

These causal genetic alleles and the products they
encode are in turn rooted within complex molecular
and cellular networks.168 Each disease-associated
allele can thus result in dysregulation of multiple
circuits,169 and disease states can be considered
emergent properties of molecular networks rather
than the result of single gene mutations.170 Inte-
grating large-scale high-dimensional data such

as genome-wide single-nucleotide polymorphism
genotyping data, GWAS data, whole genome tran-
scriptome, next-generation sequencing, and ChIP-seq
data will provide a more comprehensive view of dis-
ease states and will be a key to better understanding
of the molecular networks underlying physiological
states associated with disease. A major challenge will
be construction of predictive probabilistic networks
that can infer causality between disease phenotypes
and underlying molecular circuits. Development of
sophisticated computational methods for statistically
associating specific network behaviors with upstream
gene alleles and downstream clinical outcomes will be
critical to define causality, and to determine biomark-
ers of disease, and candidate targets for therapeutic
intervention.

Finally, network-based approaches hold poten-
tial for the identification of novel actionable drug
targets as well as the repositioning of established
targets. This may be accomplished by the integra-
tion of drug-target networks with PPI and other
biological networks.171,172 Recently, the recognition
that disease-causing alleles are embedded in complex
molecular and cellular networks has shifted the focus
of drug discovery from the ‘one-target, one-drug’
model to a ‘multitarget, multidrug’ model aimed at
systemically modulating multiple nodes in a network.
In addition, studies have revealed that many dis-
eases have common genetic origins and that drug
targets are often involved in multiple diseases, indi-
cating potential for application of known drugs to
new diseases.173,174 The ultimate goal will be to inte-
grate information from large-scale ‘omics’ approaches
with causal disease pathways and drug-target analy-
sis in order to build a comprehensive computational
platform to drive multitarget multidrug discovery. In
future clinical applications, we envision construction
of individual-specific network models for personal-
ized medicine that may empower physicians to treat
patients according to previously unutilized and unco-
ordinated levels of biological information. Integrat-
ing this information from multiple biological levels
remains a challenge that will lay the cornerstone for
a functional systems approach to human immunology
that can reveal the precise cellular and molecular net-
works that contribute to human diseases and how they
can be targeted to ameliorate disease.
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