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Epigenetic profiling for the molecular classification
of metastatic brain tumors
Javier I. J. Orozco 1, Theo A. Knijnenburg2, Ayla O. Manughian-Peter1, Matthew P. Salomon1,

Garni Barkhoudarian 3, John R. Jalas4, James S. Wilmott5, Parvinder Hothi6, Xiaowen Wang1, Yuki Takasumi4,

Michael E. Buckland7, John F. Thompson5,8, Georgina V. Long 5,9, Charles S. Cobbs6, Ilya Shmulevich2,

Daniel F. Kelly3, Richard A. Scolyer5,8,10, Dave S.B. Hoon 1,11 & Diego M. Marzese 1

Optimal treatment of brain metastases is often hindered by limitations in diagnostic cap-

abilities. To meet this challenge, here we profile DNA methylomes of the three most frequent

types of brain metastases: melanoma, breast, and lung cancers (n= 96). Using supervised

machine learning and integration of DNA methylomes from normal, primary, and metastatic

tumor specimens (n= 1860), we unravel epigenetic signatures specific to each type of

metastatic brain tumor and constructed a three-step DNA methylation-based classifier

(BrainMETH) that categorizes brain metastases according to the tissue of origin and ther-

apeutically relevant subtypes. BrainMETH predictions are supported by routine histopatho-

logic evaluation. We further characterize and validate the most predictive genomic regions in

a large cohort of brain tumors (n= 165) using quantitative-methylation-specific PCR. Our

study highlights the importance of brain tumor-defining epigenetic alterations, which can be

utilized to further develop DNA methylation profiling as a critical tool in the histomolecular

stratification of patients with brain metastases.
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Brain metastases (BM) are the most common intracranial
neoplasm in adults and are the next frontier for the man-
agement of metastatic cancer patients. Large population-

based studies have shown that 8–10% of cancer patients develop
BM, with this proportion increasing up to 26% when autopsy
studies were included1–5. Lung cancer, breast cancer, and cuta-
neous melanoma account for the vast majority (75–90%) of
secondary neoplasms in the brain1–4. Treatment options for BM
include surgery, whole-brain radiotherapy, stereotactic radio-
surgery, and systemic drug therapy, such as chemotherapy, tar-
geted therapies, and immunotherapy6. While systemic
chemotherapy has limited efficacy, targeted therapies have
recently shown promise for oncologic management6. These tai-
lored therapies have significantly affected treatment decision-
making for patients with breast cancer BM (BCBM). For example,
patients with human epidermal growth factor receptor 2 (HER2)-
positive BCBM can be treated with anti-HER2 agents7 and
patients with estrogen receptor (ER)-positive BCBM with endo-
crine agents, cyclin-dependent kinases 4 and 6 (CDK4/6) inhi-
bitors, and the mechanistic target of rapamycin kinase (mTOR)
inhibitors8. As such, accurate diagnosis is essential to effectively
treat patients with BM.

Diagnosis of BM is currently based on neuro-imaging and
confirmed by pathology examination. When appropriate, the
diagnostic algorithm begins by distinguishing BM from primary
brain tumors using histologic features guided by the clinical and
radiologic information9. Then, to identify the tissue of origin,
morphological evaluation is supplemented by several immuno-
histochemistry (IHC) markers including thyroid transcription
factor (TTF-1), chromogranin and synaptophysin for lung cancer
BM (LCBM); GATA3 binding protein (GATA3), mammaglobin,
gross cystic disease fluid protein 15 (GCDFP-15) and ER for
BCBM; and human melanoma black 45 (HMB45), melanoma
antigen recognized by T-cells 1 (Melan A/MART-1), SRY-Box 10
(SOX-10), and the S100 calcium binding proteins (S-100) for
melanoma BM (MBM)9,10. However, a major limitation in
achieving an accurate pathological diagnosis is the often poor
differentiation and/or limited availability of metastatic brain
tumor tissues to evaluate the complete panel of IHC markers9.

The advent of molecular classifiers based on the synergy
between comprehensive tumor profiling and statistical modeling
has dramatically improved the diagnosis, prognosis and, impor-
tantly, the therapeutic approaches for cancer patients11. To date,
however, molecular classifiers to assist pathological diagnosis and
improve stratification of patients with metastatic brain tumors
have been ill-defined. DNA methylation (DNAm) profiling was
recently shown to be a powerful analytical tool to identify the
origin of cancers from unknown primary sites and to better
stratify patients with primary central nervous system (CNS)
tumors12,13. We additionally have shown that DNAm profiling
can be efficiently performed using small samples of BM tissues14–
17.

Here, we hypothesize that the construction and validation of
DNAm classifiers for BM could address current anatomic
pathology diagnostic issues. The objective of our study is to
identify genomic regions whose DNAm status allow for (i) dis-
crimination between primary and metastatic brain tumors, (ii)
accurate identification of the tissue of origin for metastatic brain
tumors, and (iii) assistance in the classification of therapeutically
relevant subtypes for patients with BCBM. For this study, we
included 165 patients with surgically resectable primary or
metastatic brain tumors. Using Infinium HumanMethylation
450K (HM450K) microarray technology we generate high-quality
genome-wide DNA methylomes for 96 microdissected BM spe-
cimens including BCBM (n= 30), LCBM (n= 18), MBM (n=
44), and BM with uncertain histogenesis (n= 4). We further

integrate our data with additional publicly available DNA
methylomes (n= 1860) to construct and evaluate a robust brain
metastasis DNAm classifier (BrainMETH). BrainMETH involves
a three-step classification process that assists in diagnosing brain
neoplasms: first, by discriminating between primary and meta-
static brain tumors (Class A), second, by identifying the tissue of
origin of the BM (Class B), and finally, by discriminating BCBM
subtypes (Class C). We additionally use BrainMETH to identify
the tumor site of origin of BM with an ‘uncertain’ diagnosis and
to predict the status of IHC markers of BCBM that were not
assessed in the initial diagnosis. Importantly, highlighting its
potential clinical utility, we show that targeted quantitative-
methylation-specific PCR (qMSP) can be applied to efficiently
evaluate the representative genomic regions included in Brain-
METH in DNA extracted from microdissected formalin-fixed
paraffin-embedded (FFPE) archived tissue sections.

Results
Brain metastasis DNA methylation data processing. To identify
intrinsic differences in the epigenetic profiles of metastatic brain
tumors, we first generated DNAm signatures for 96 micro-
dissected BM tissues (a list of BM specimens with clinical and
demographic information can be found in Supplementary Note 1
and Supplementary Data 1). This comprehensive profiling was
performed using the HM450K microarray, which, in addition to
currently being the most commonly used DNAm profiling plat-
form, has also been employed by The Cancer Genome Atlas
(TCGA) project to profile large cohorts of solid tumors18,19.
Based on the most recent characterization of HM450K probes20,
102,941 genomic regions were excluded from downstream ana-
lyses. The exclusion criteria included probes that recognize
common single nucleotide polymorphisms (SNPs), repetitive
genomic elements, high GC density (> 25%) on the 50-bp length
probe sequence, a non-unique mapping to the genome, or low
mapping quality (Fig. 1a). Additionally, to decrease potential
biases associated with the gender of BM patients, we excluded
105,422 probes recognizing regions located in sex chromosomes
or with proven cross-reactivity with sex chromosomes21,22. 2983
probes with a detection P-value greater than 0.01 (‘NA’) in any
specimen were also excluded from this study. In addition, to
obtain a set of genomic regions comparable to the newer gen-
eration of DNAm arrays, we excluded 13,882 probes that have
been removed from the design of the HumanMethylation EPIC
BeadChip array23. Finally, to decrease the influence of non-tumor
cells, we excluded 48,797 genomic regions with no significant
DNAm differences (Wilcoxon test; P-value > 0.05) between BMs
and normal brain tissues (n= 100; GSE43414). Thus, this pipe-
line identified a dataset containing 211,552 informative HM450K
probes to explore similarities and differences among brain tumors
(Fig. 1a).

DNAm profiles of primary and metastatic brain tumors. Single
intracranial metastases and primary brain tumors, mainly high-
grade gliomas or glioblastomas (GBM), often exhibit overlapping
clinical and radiological features24. To evaluate the potential
utility of DNAm profiling for the classification of brain tumors,
we identified a cohort of patients with GBM whose tumors have
been profiled using the HM450K platform by TCGA-GBM pro-
ject25. In order to reduce the impact of the lack of tissue
microdissection on TCGA samples, we excluded GBM specimens
with < 70% tumor purity evaluated by the consensus purity
estimation (CPE) method26. As expected, correlation and prin-
cipal component analyses (PCA) using randomly-selected
HM450K probe sets (mean number of probes per set= 22,543
± 150.7; Supplementary Data 2) revealed significant DNAm
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differences between primary and metastatic brain tumors (Fig. 1b,
c). The first three components of the PCA explained a mean of
84.14 ± 0.6% of the cumulative variance (Supplementary Data 2).
GBM specimens showed a more confined distribution in the
three-dimensional component space of the PCA than the BM
specimens (Fig. 1c), which was also observed when comparing
GBM specimens with each of the BM types (BCBM, LCBM, and
MBM; Supplementary Fig. 1a). Interestingly, by analyzing a
recently published DNAm dataset (GSE90496; n= 2085)13, we
found that DNAm profiles of BMs substantially differ from a
wide range of primary CNS tumors. Supporting this finding,

distinct clustering of BM specimens can be observed in the
t-distributed stochastic neighbor embedding (t-SNE) and
TumorMap visualizations (Supplementary Fig. 1b, c). Based on
the intrinsic differences in DNAm distributions of primary versus
metastatic brain tumors, we explored differentially methylated
regions with the potential to discriminate between these tumor
types. Employing a strict statistical cut-off (absolute DNAm dif-
ference > 30%; false discovery rate (FDR)-corrected q-value
< 0.01), we identified 14,494 regions differentially methylated
between GBM and BM specimens (Supplementary Fig. 1d). The
Genomic Regions Enrichment Annotations Tool (GREAT)27
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Fig. 1 Genome-wide DNA methylation profiling of brain tumors. a Diagram describing the normalization algorithm of Infinium HM450K probes. b Matrix
depicting the Spearman’s ρ correlation coefficients among primary and metastatic brain tumors. c Principal component analysis (PCA) of GBM (n= 60)
and brain metastases (n= 94) using DNA methylation level of 22,483 randomly-selected genomic regions. d DNA methylation level of the 12 most
differentially methylated regions between GBM and BM specimens. The upper panel shows the β-value of six genomic regions differentially
hypermethylated in BM (cg07076109, cg19111287, cg09962377, cg10982851, cg15002250, and cg23108580) and the lower panel shows the β-value of
six genomic regions differentially hypermethylated in GBM (cg25814383, cg26306329, cg06663644, cg20604286, cg04314308, and cg26306994) for
each specimen in the study (n= 154). The top and bottom of each box represent the first and third quartile, respectively; the internal line represents the
median. e Validation of differentially methylated regions by qMSP in an independent cohort of brain tumor specimens (n= 72). The left boxplot shows the
methylation level of a genomic region hypermethylated in BM specimens (BM-C; cg09962377) and the right boxplot the level of a genomic region
hypermethylated in GBM specimens (GBM-A; cg25814383; chr19:19,336,240). The top and bottom of each box represent the first and third quartile,
respectively; the internal line represents the median. *Wilcoxon test, P-value < 0.02. f ROC showing the prediction potential of brain tumor type using
qMSP scores for each independent genomic region and score for the combination (DNAm level of BM-C minus DNAm level of GBM-A; AUC= 0.92,
95% CI= 0.85-0.99); see Supplementary Data 3 for details about validated genomic regions. The AUC values are indicated between square brackets
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indicated that regions hypomethylated in GBM (n= 8905) were
predominantly associated with genes involved in neuronal dif-
ferentiation and proliferation (Hypergeometric test; FDR-
corrected q-value= 1.96e−39) and regions hypomethylated in
BM (n= 5589) were associated with genes involved in neuronal
formation, development, and differentiation (Hypergeometric
test; FDR-corrected q-value= 1.14e−10; Supplementary Fig. 1e).
Twelve differentially methylated regions were selected based on a
low overall variance and large absolute differences in DNAm
levels between GBM and BM types. Six were consistently
hypermethylated in BM specimens (called herein BM-A to BM-
F), and six were hypermethylated in GBM specimens (called
herein GBM-A to GBM-F; Fig. 1d and Supplementary Fig. 2a).
Using the HM450K data, we found that by surveying at least two
of these genomic regions hypermethylated in BM we could dis-
tinguish primary from metastatic brain tumors with significant
accuracy (Area under the curve (AUC) > 0.90; Supplementary
Fig. 2b). Importantly, discrimination power was improved when
combining regions with opposing DNAm patterns in GBM and
in BM specimens. The evaluation of one BM hypermethylated
region with one GBM hypermethylated region showed higher
prediction capability (AUC= 0.99, 95% CI= 0.99–1.00) than
evaluation of single genomic regions (Supplementary Fig. 2c).
We, therefore, assessed the classification potential of these regions
in independent cohorts (n= 227) of patients with GBM
(GSE85539)28, patients with low-grade gliomas (LGGs) from the
EORTC-26951 phase III clinical trial (GSE48461)29, and patients
with BM (GSE44661) included in our previous studies15. We
found that evaluation of single genomic regions provides sub-
stantial discrimination potential between BM and GBM (n= 168;
AUC range = 0.97–0.99; Supplementary Fig. 3a) and moderate
discrimination efficiency between BM and LGG (n= 75; AUC
range = 0.67–0.89; Supplementary Fig. 3b). To further evaluate
the pairing of BM with GBM hypermethylated regions, we ana-
lyzed the DNAm level of these 12 genomic regions in an inde-
pendent cohort of microdissected brain tumor clinical specimens
(n= 72) using qMSP. This analysis confirmed the significant
DNAm differences of these regions between GBM and BM spe-
cimens (Wilcoxon test; P-value < 0.02; Fig. 1e). Thus, based on
qMSP evaluation, we identified regions with poor, moderate, and
good performance (genomic coordinates, nearby genes, primer
sequences, and qMSP performance can be found in Supplemen-
tary Data 3). While using additional qMSP primer sets did not
improve the performance of six poor performing regions, we were
able to determine the DNAm status by employing locus-specific
bisulfite sequencing (Supplementary Fig. 3c; sequencing primer
sequences listed in Supplementary Data 3). However, because of
the quantitative nature of qMSP, we employed this method to
analyze regions with good and moderate qMSP performance and
thus generate a scale variable for assessing accuracy to dis-
criminate between types of brain tumors. We found that DNAm
level of one region could accurately distinguish BM from GBM
specimens (i.e. for GBM-A: AUC= 0.87, 95% CI= 0.76–0.98).
Importantly, the combination of two regions with good qMSP
performance (BM score=DNAm level of BM-C minus DNAm
level of GBM-A; Supplementary Fig. 3d) showed a higher pre-
diction potential than single regions (AUC= 0.92, 95% CI=
0.85–0.99; Fig. 1f). Based on these results, regions whose DNAm
level (as assessed by qMSP) exhibited good predictive accuracy,
were selected as the first step of the DNAm-based brain tumor
classifier (BrainMETH class A).

DNAm profiles of brain metastases from different origins. We
observed that BM DNAm profiles present significantly lower
overall correlation (mean Spearman’s ρ= 0.77 ± 0.02) compared

to GBM (mean Spearman’s ρ= 0.90 ± 0.06; P-value= 2.2e−16;
Fig. 2a and Supplementary Fig. 4a). Biologically, this epigenetic
variability may reflect the diversity of the tissues of origin and the
influence of differing pre-BM therapeutic approaches. Based on
these observations, we further explored differences among
DNAm signatures of intracranial metastases. Interestingly,
unsupervised hierarchical cluster (HCL) analysis of the top 5000
most variable regions precisely separated the BM specimens into
two main clusters (Bootstrap value= 100%; Fig. 2b). The influ-
ence of the epigenetic landscape of the tissue of origin was
reflected in the organization of the hierarchical tree. Cluster A
included BMs from patients with epithelial tumors (breast and
lung carcinomas) and cluster B contained BMs from patients with
neuroectodermal tumors (cutaneous melanoma; Fig. 2b and
Supplementary Fig. 4b). Similar results were observed even when
the number of genomic regions was increased from 5000 to
100,000 (Supplementary Fig. 4c–f). By grouping all the BM spe-
cimens according to the pathologically confirmed primary tumor
of origin (n= 90), we found 31,818 regions differentially
methylated among the three BM types (one-way ANOVA; Bon-
ferroni adjusted P-value < 0.05; Supplementary Data 4). Pathway
enrichment analyses of BM type-specific hypomethylated regions
revealed multiple relevant genes and pathways specific to each
BM type, including upregulation of serpine molecules, which has
been linked to the ability of BM cells to prevent attack by reactive
astrocytes30, and enhanced syndecan-mediated signaling events,
which have been implicated in promoting BM cell migration
through the blood-brain barrier31 (Supplementary Data 5). PCA
of the differentially methylated genomic regions (n= 31,818)
showed a clear separation of BM specimens according to the
tumor of origin (Fig. 2c). The distribution of each BM type
suggested that the various treatment modalities employed pre-
ceding our analysis did not significantly affect the DNAm levels
of these genomic regions. For this comparative analysis, we
considered any prior systemic therapy (PST), prior chemotherapy
(PCT), prior targeted therapy (PTT), or prior radiotherapy (PRT;
Supplementary Fig. 5). We found a negligible number of genomic
regions to be significantly associated with prior treatment mod-
alities (Bonferroni adjusted P-value < 0.05; mean= 14.4, range:
0–91; < 0.02% of the assayed regions). Then, using the 31,818
differentially methylated genomic regions, we evaluated BMs
from four female patients treated for LCBM, but with ambiguous
IHC profiling, or with a history of both primary lung cancer and
primary breast cancer. In accordance with the pathological pre-
sumptive diagnosis, these four BM specimens with “uncertain”
diagnosis showed an overlap with pathologically confirmed
LCBM specimens (Fig. 2d). Moreover, we found that the spatial
separations based on tumor DNAm signatures between BCBM,
LCBM, and MBM specimens were independent of the patient’s
gender, as demonstrated by the analysis of a sub-cohort of BMs
from female patients (n= 58; Fig. 2e). Together, these results
reflect the efficiency and potential utility of DNAm profiling in
accurately identifying the tissue of origin of intracranial
metastases.

DNAm classifiers identify the origin of brain metastases. Based
on the observed differences in methylation patterns among LCBM,
BCBM, and MBM specimens, we constructed and evaluated
DNAm classifiers to efficiently identify the BM tissue of origin
using a random forest (RF)-based supervised learning approach32.
We initially used the top 10,000 most variable differentially
methylated regions among BCBM, LCBM, and MBM specimens.
Overall, the resulting classifiers demonstrated an excellent classi-
fication potential (Fig. 3a) with an average sensitivity and speci-
ficity over 90% for all three BM types (MBM, BCBM, and LCBM;

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06715-y

4 NATURE COMMUNICATIONS |          (2018) 9:4627 | DOI: 10.1038/s41467-018-06715-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Fig. 3b). We found that by surveying as few as 20 regions, the
classifiers exhibited a median cross-validation (CV) performance
above 90%, with a deterioration of this value observed only when
employing less than 10 regions (Fig. 3a). Thus, we identified the
regions with the highest importance for the prediction of the
tumor of origin (Gini impurity score (GIS); Fig. 3c). Additionally,
to better understand the basis of the DNAm signatures that
stratify BM specimens by the tumor of origin, DNA methylomes
from breast, lung, and melanoma primary tumors generated by
TCGA projects were used to test the prediction performance of
these same regions when applied to primary tumors. Overall, we
found that patterns of differential methylation of these regions for
BMs and primary tumors were in agreement (Fig. 3d). Specifically,
the top 100 most informative BM regions showed good perfor-
mance for the classification of primary tumors according to the
tumor type. The first three components of the PCA explained up
to 75.5% of the cumulative variance (Supplementary Fig. 6a).
Bootstrap resampling of the HCL showed 100% support for the
separation between the cluster containing the primary melanomas
and the cluster containing the primary breast and lung carcino-
mas, and 78% support for the separation between the cluster
containing most of the primary breast tumors and the cluster
containing most of the primary lung tumor specimens (Supple-
mentary Fig. 6b). Moreover, an independent RF classification
model applied to the primary tumors using TCGA DNAm data

revealed a highly significant overlap in the top 100 most predictive
genomic regions between the BM and the primary tumor classi-
fiers (Hypergeometric test; P-value < 2.8e−23). These findings
suggest that BM type-specific DNAm signatures are comparable to
genomic region differences between their corresponding primary
tumors. To further examine the ability of these regions to classify
BM tumor of origin, we then refined the number of regions by
selecting nine which exhibited a low overall variance within each
tumor type, and a large difference in the mean DNAm level
among the three BM types (Supplementary Fig. 6c–e). Individu-
ally, DNAm levels of these regions demonstrated good perfor-
mance in identifying the BM tumor of origin (n= 94;
Supplementary Fig. 7a). We therefore designed qMSP assays for
each region and evaluated DNAm levels in metastatic brain tumor
clinical specimens (n= 59). Based on these results, each assay was
categorized into good, moderate, and poor qMSP performance
(genomic coordinates, nearby genes, primer sequences, and qMSP
performance can be found in Supplementary Data 6). DNAm
status of regions exhibiting poor performance was established
using locus-specific bisulfite sequencing (Supplementary Fig. 7b;
sequencing primer sequences listed in Supplementary Data 6). We
then selected three regions, one per BM type, with a significant
correlation between qMSP and HM450K assays (Spearman’s ρ;
P-value < 0.001; Supplementary Fig. 7c) and significant differential
methylation among the BM types (Wilcoxon test; P-value < 0.001;
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Fig. 3e). qMSP evaluation of these regions showed excellent pre-
diction performance to identify the tissue of origin (AUC range=
0.97–0.99), which was slightly improved by combining one region
per BM type into a tumor origin-specific DNAm score (mean
AUC= 0.99; Fig. 3f). As evidence of the potential practical
applications of these qMSP assays, we found that the evaluation of
three regions (MBM-B, LCBM-C, and BCBM-C) confirmed the
origin of four BMs with uncertain diagnosis as LCBM, as fore-
casted by HM450K data (Supplementary Fig. 7d). Thus, genomic
regions with good qMSP classification performance were selected
as the second step of the brain tumor DNAm classifier (Brain-
METH class B).

Differential DNAm patterns among BCBM subtypes. Char-
acterization of BCBM subtype is critical to guiding clinical
management. Therefore, we further explored the ability of DNAm
profiling to discriminate between molecular subtypes of BCBM
specimens. The expression levels of the hormone receptors (HR;
ER and progesterone (PgR)) and HER2 assessed by IHC, allowed
us to classify 24 of the 28 BCBMs into three clinically relevant
classes: (1) HR+/HER2−, (2) HR-positive or HR-negative/
HER2-positive (labeled HER2+), and (3) HR−/HER2−. The first
evaluation involved the identification of regions differentially
methylated among the three BCBM subtypes. Because patient
gender was homogeneous, we included 4229 additional good
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Fig. 3 DNA methylation classifiers to predict the tissue of origin of brain metastases. a CV performance across 100 repeats for the RF classifiers to predict
tumor of origin, in order of decreasing number of features used in model construction, from left to right (x-axis). Red bars on the boxplots indicate medians
and light blue bars depict the performance based on permuted class labels and represent the random background distribution. b Bar plots depicting the
prediction performance as measured by sensitivity and specificity for each of the BM types. The bars show the average performance and interquartile range
(error bars) across all models with 40 features or more across all repeats. c Bar plots depicting the RF feature importance (mean decreases in Gini impurity
score; GIS) of the 15 most predictive genomic regions averaged across all models with 40 features or more and across all repeats. d For three genomic
regions in the top 15: boxplots of DNAm β-values across our cohort stratified by tumor of origin (BCBM n= 28, LCBM n= 22, and MBM n= 44) in the
upper panels and TCGA cohorts of primary breast tumors (n= 401), primary lung tumors (n= 307), and primary melanomas (n= 83) in the lower panels.
Differences in the DNAm levels among the groups were statistically significant for all the cases (Kruskal–Wallis test; P-value < 0.0001). e DNAm levels
assessed by qMSP for three regions differentially methylated among the three BM types (n= 59). The top and bottom of each box represent the first and
third quartile, respectively; the internal line represents the median. ***Wilcoxon test; P-value < 0.001. f ROC curves showing the prediction potential for the
tumor of origin (n= 59) for each of the differentially methylated regions and combinations into BM type-specific scores: MBMscore=DNAm level of
MBM-B minus DNAm level of LCBM-C minus DNAm level of BCBM-C; LCBMscore=DNAm level of LCBM-C minus DNAm level of BCBM-C minus
DNAm level of MBM-B; and BCBMscore=DNAm level of BCBM-C minus DNAm level of LCBM-C minus DNAm level of MBM-B; see Supplementary
Data 6 for details about these genomic regions. The AUC values are indicated between square brackets
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quality probes recognizing genomic regions located on the X-
chromosome. HCL using 409 significantly differentially methy-
lated regions (one-way ANOVA; FDR-corrected q-value < 0.0005;
Supplementary Data 7) generated three sub-clusters containing
each of the BCBM subtypes (Bootstrap value= 100%; Fig. 4a).
Interestingly, HER2+ and HR+/HER2− BCBM specimens,
which are generated from the late and differentiated luminal
progenitor mammary cells, respectively, were included in a

common cluster, while HR−/HER2− BCBM specimens, which
commonly present gene expression profiles similar to mammary
myoepithelial (basal layer) cells, were included in a separate
cluster, indicating the relationship between the DNAm land-
scapes and the cell type of origin33,34, as well as supporting the
concept that basal-like breast cancer represents a unique disease
entity35. We found that these differentially methylated regions
were organized in three specific clusters (Fig. 4a and
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Supplementary Data 8). The first cluster (CL1) included regions
hypermethylated in HR+/HER2− BCBM and the third cluster
(CL3) included regions hypermethylated in HR−/HER2−
BCBM, while the second cluster (CL2) included regions hyper-
methylated in either HR+/HER2− or HER2+ BCBM and
hypomethylated in HR−/HER2− BCBM specimens. This orga-
nization further highlights the relationship between DNAm
profiles and the originating cell type (Supplementary Data 8). Due
in part to the small number of differentially methylated regions
among the BCBM molecular subtypes, the GREAT analysis did
not indicate significant enrichment of genes and pathways for
regions specifically methylated in each BCBM subtype (threshold:
hypergeometric test; FDR-corrected q-value= 0.05). We also
explored the associations between the three clusters of genomic
regions and the specific BCBM subtypes using a detrended cor-
respondence analysis (DCA; cumulative inertia of the first three
axes= 80.1%; Fig. 4b). This analysis showed that not all these
regions are equally relevant to define the BCBM subtypes.
Therefore, by employing the nearest shrunken centroid algo-
rithm, we identified 126 regions specifically associated with
BCBM molecular subtype (δ= 2.1 and ρ= 0.9; Supplementary
Data 9). To gauge the ability of DNAm profiling to predict BCBM
subtypes, we included four additional patients without prior HR
and/or HER2 IHC evaluation of their BM specimens, which were
treated based on IHC evaluation of their primary breast cancer
tumors and/or extra-cranial metastases. Multidimensional
reduction analysis using the DNAm level of the 126 regions
suggested that two of these BCBM specimens (BCBM-10 and
BCBM-23) belong to the HR+/HER2- subtype and the other two
(BCBM-20 and BCBM-31) belong to the HER2+ subtype
(Fig. 4c). Remarkably, the BCBM subtypes predicted by the
DNAm analysis were prospectively confirmed by IHC analyses of
ER, PgR, and HER2 by the Department of Pathology at Provi-
dence Saint John’s Health Center (Fig. 4d). In view of these
promising results, we then evaluated the utility of this epigenetic
signature to recognize multiple BM lesions. To this end, we
performed HM450K profiling of two cases with multiple BCBM.
The first patient presented two synchronous metastastic brain
tumors, and the second patient presented asynchronous meta-
static lesions (BCBM-03 paired with BCBM-04 and BCBM-05
paired with BCBM-19, respectively; Fig. 4e). Interestingly, HCL of
the 126 identified regions (Supplementary Data 9) denoted an
overlap between paired BM lesions. These results suggest that the
BCBM subtypes can be inferred from the DNAm levels using a
relatively small set of genomic regions.

Assembly of DNAm classifiers to identify BCBM subtypes. Due
to the substantially different DNAm signatures observed among
BCBM subtypes, we set out to build a classification scheme that
could accurately recognize therapeutically oriented BCBM

subtypes. Starting with the top 10,000 most variable regions in the
BCBM dataset, we employed an RF-based approach32 to train and
test a classifier that discriminates between the three BCBM sub-
types. All the resulting classifiers showed improved classification
performance compared to random classification (Fig. 5a), yet
substantially decreased performance compared to the DNAm
classifiers generated to identify BM tissue of origin (Fig. 3a). This
difference in the classification performances can be explained by
two facts: (1) the sample size to train the BM tissue of origin
classifier is larger than the BCBM subtype classifier (n= 94 vs
n= 28, respectively), enabling more complex and predictive
patterns to be learned from the data and (2) there is a significantly
larger difference in global DNAm, and thus discriminatory
power, between BM originating from different tissues than
between different BCBM subtypes. Here, this was clearly evi-
denced by the larger variance explained by BM types compared to
BCBM subtypes (mean F-Ratio for BM types: 10.02 ± 16.4 and
mean F-Ratio for BCBM subtypes: 2.29 ± 3.35; Wilcoxon test;
P-value < 2.2e−16). In spite of these technical and sample lim-
itations, classifiers using few genomic regions (between 10 and
40) retained a good overall classification performance, similar to
classifiers using the entire dataset (Fig. 5a). Specifically, the
median CV performance started to deteriorate only with classi-
fiers comprised of fewer than 10 genomic regions. In keeping with
our observation of the effect of sample size on classifier perfor-
mance, the most frequent BCBM subtype (HR+/HER2−), could
be predicted with the highest sensitivity and specificity (Fig. 5b).
Additionally, regions with high feature importance (GIS; Fig. 5c)
were compared with DNA methylomes from primary breast
cancer tumors generated by TCGA-BRCA project. The DNAm
patterns of the most informative regions were generally in
agreement between BCBM and primary breast cancer specimens
(Fig. 5d). However, unlike our observation for the BM tissue of
origin classifiers, the genomic locations that efficiently classified
BCBM subtypes, showed modest to poor efficiency for classifi-
cation of primary breast cancer specimens into subtypes (Sup-
plementary Fig. 8a). PCA using the top 100, 50, 30, 15, 10, and 5
most informative BCBM regions, explained a mean of 58.50 ±
3.2% of the cumulative variance for the distribution of primary
breast cancer specimens. This result suggests that the selected
regions may be exclusively relevant for BCBM classification and
should not be employed to discriminate among primary breast
cancer molecular subtypes. It also suggests that regions dis-
criminating BCBM subtypes may be determined or influenced by
the tissue environment, and potentially, the treatment regimens.
To explore the potential practical applications of the identified
DNAm signatures, we aimed to efficiently classify BCBM
according to molecular subtypes. To this end, here we selected ten
regions with low variance within each subtype, and large DNAm
differences among the three classes (Supplementary Fig. 8b–d).

Fig. 4 DNA methylation differences among BCBM subtypes. a Hierarchical cluster analysis using Euclidean distance for the DNAm level of 409 regions
significantly differentially methylated (one-way ANOVA; FDR-corrected q-value < 0.0005; Supplementary Data 7) among the three breast cancer
molecular subtypes (n= 24 BCBM specimens). This analysis revealed three distinct clusters of genomic regions. CL1 includes regions specifically
methylated in HR+/HER2− BCBM, CL2 includes regions methylated in both, HR+/HER2− BCBM and HER2+ BCBM, and CL3 includes regions specifically
methylated in HR−/HER2− BCBM. b Two-dimensional projection depicting the DCA for differentially methylated regions (n= 409) and BCBM specimens
(n= 24) with known IHC profile. This plot shows the spatial overlapping of genomic regions with relative importance for each BCBM molecular subtype.
c PCA including 24 BCBM specimens with known molecular subtypes and four BCBM with missing IHC information using 126 genomic regions with
classification potential. The unconfirmed specimens were assigned to two different clusters. BCBM-10 and BCBM-23 overlapped with HR+/HER2− BCBM
and BCBM-20 and BCBM-31 overlapped with HER2+ BCBM. d IHC evaluation in a CLIA-certified Pathology Department for ER, PgR, and HER2 expression
(scale bar, 100 µm). The results confirm the DNAm-based prediction for the expression of HR and HER2. e Magnetic resonance imaging showing two
patients with synchronous (case 1) BCBM lesions (BCBM-03 and BCBM-04) and asynchronous (case 2) BCBM lesions (BCBM-05 and BCBM-19).
f Phylogenetic tree generated using the Euclidian metric distance for BCBM according to DNAm profile of the 126 genomic regions
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These regions, alone or in combination, showed good dis-
crimination potential for the respective BCBM subtypes using the
HM450K data (AUC > 0.9; Supplementary Fig. 9a). We then
designed qMSP assays for each region and evaluated their DNAm
level in BCBM specimens (n= 31). Based on the qMSP analysis,
each region was classified into poor, moderate, and good per-
formance (genomic coordinates, nearby genes, primer sequences,
and qMSP performance listed in Supplementary Data 10). Fol-
lowing qMSP evaluation with alternative primer sets, regions that

still exhibited poor performance were evaluated using locus-
specific bisulfite sequencing (Supplementary Fig. 9b; sequencing
primer sequences listed in Supplementary Data 10). To take
advantage of the quantitative nature and simplicity of the qMSP
assays, we focused on regions with significant differential
methylation among the BCBM subtypes (Wilcoxon test; P-value
< 0.001; Fig. 5e) that, in addition, exhibited significant agreements
with HM450K data (Spearman’s ρ; P-value < 0.001; Supplemen-
tary Fig. 9c). Combining the DNAm levels of three or six regions
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Fig. 5 A DNA methylation-based classifier to predict BCBM subtypes. a Boxplots describing the CV performance across 100 repeats for RF classifiers to
predict breast cancer subtypes. From left to right, decreasing numbers of features were used to construct the model (x-axis). The top and bottom of each
box represent the first and third quartile, respectively; the internal red line represents the median values. Light blue bars depict the performance based on
permuted class labels and represent the random background distribution. b Bar plots depicting the prediction performance as measured by sensitivity and
specificity for each of the three subtypes. The bars show the average performance and interquartile range (error bars) across all models with 10 features or
more across all repeats (HR+/HER2−; n= 12, HER2+; n= 11, and HR−/HER2−; n= 5). c Bar plots depicting the RF feature importance (mean decreases
in Gini impurity score; GIS) of the 15 most predictive regions averaged across all models with 10 or more features and across all repeats. d Boxplots of
DNAm levels (β-values) across our cohort stratified by subtypes (HR+/HER2−; n= 12, HER2+; n= 11, and HR−/HER2−; n= 5) and TCGA-BRCA cohort
of primary breast tumors stratified to match our molecular subtype definitions (HR+/HER2−; n= 443, HER2+; n= 83, and HR−/HER2−; n= 117).
Differences in the DNAm levels among the groups were statistically significant for all the cases (Kruskal–Wallis test; P-value < 0.0001). e DNAm levels
assessed by qMSP for six genomic regions with differential DNAm among the three BCBM subtypes (n= 31). ***Wilcoxon test; P-value < 0.001. f ROC
curves showing the prediction potential for the breast cancer subtypes (n= 31) for each of the six differentially methylated regions and combinations of
three or six regions into BCBM molecular subtype-specific scores: HR+/HER2-score=DNAm level of HR+/HER2− minus DNAm level of HER2+ minus
DNAm level of HR−/HER2; HER2+ score=DNAm level of HER2+ minus DNAm level of HR+/HER2− minus DNAm level of HR−/HER2; and HR
−/HER2-score=DNAm level of HR−/HER2− minus DNAm level of HR+/HER2− minus DNAm level of HER2+; see Supplementary Data 10 for details
about these regions. The AUC values are indicated between square brackets
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presented a slightly higher predictive potential (mean AUC=
0.95) than single regions (mean AUC= 0.91) in all cases (Fig. 5f).
Thus, unlike the BM tumor of origin qMSP classifier, which
required only one region per BM type, at least two genomic
regions per BCBM subtype were needed for accurate BCBM
classification (Fig. 5f). In agreement with the HM450K-based
analysis of 126 regions, qMSP evaluation of these six regions
identified the BCBM subtypes of four specimens lacking an IHC
profile at the initial diagnosis (Supplementary Fig. 9d). Based on
this evidence, this informative set of regions validated by qMSP
was selected for the DNAm-based classification of BCBM sub-
types (BrainMETH class C).

Discussion
In this study, we constructed and validated DNAm classifiers to
aid in the diagnosis of BMs. Routinely, the first step in the
diagnosis of metastatic brain tumors is to exclude a possible
primary CNS neoplasm9,36,37. Here, we found substantial differ-
ences in the DNAm landscapes of primary and metastatic brain
tumors, allowing us to define DNAm signatures capable of dis-
tinguishing BM types and subtypes. These findings are in con-
cordance with a pilot study performed by Euskirchen et al. using
nanopore sequencing38 and complement a recent study reported
by Capper et al. using a large collection of DNAm profiles from
primary CNS tumors13. Together, these data are indicative of the
value of DNAm profiling for the comprehensive classification of
primary and secondary tumors affecting the CNS. Of note, our
study found that the combination of a small number of genomic
regions provides high accuracy in discriminating primary from
metastatic brain tumors. This is of great clinical and histo-
pathological relevance, as we have demonstrated that these
regions can be assessed by targeted qMSP using DNA from
routine FFPE clinical specimens. Additionally, this approach can
be easily adapted to cover other genomic regions of interest to
increase the robustness and expand the applications of the
DNAm classifier. However, we encountered limitations that were
primarily related to the high density of CpG sites surrounding
some of the informative genomic regions. For these regions, we

designed locus-specific bisulfite sequencing assays that success-
fully determined the DNAm status but failed to generate a non-
binary quantification of the DNAm level. Therefore, we per-
formed technical validation assays using regions with good and
moderate qMSP performance. Regions capable of discriminating
between GBM and BM by qMSP were included in the first step of
the DNAm-based BM classifier (BrainMETH class A; summar-
ized in Fig. 6a).

In order to obtain an accurate prognosis and apply tumor-
specific therapies, the second step in the histopathological diag-
nosis for BMs is to identify the tissue of origin6,39. A recent study
by Moran et al. provided strong evidence for the utility of DNAm
profiling in determining the origin of cancer of unknown pri-
mary12. In this regard, we found that BCBM, LCBM, and MBM
present intrinsic differences in DNAm profiles that reflect the
features of the embryonic origin for each cell type. Thus, MBMs,
which are derived from the neuroectodermal layer, showed sub-
stantial differences compared to the epithelial-derived BMs
(BCBM and LCBM). Using the DNAm profiles and clinical-
demographic data of our dataset, we tested for potential influ-
ences of prior therapeutic interventions. Our results suggested
that prior treatments do not have a significant influence on the
DNAm landscapes, at least of the regions selected for our study.
We understand that, due to the range of multi-treatment
approaches present in this BM cohort, these results are not
definitive, and a study specifically designed to test the influence of
various treatments is required to conclusively assess possible
effects on BM DNA methylomes.

As building evidence indicates that DNAm signals are a useful
diagnostic aid, we established a set of genomic regions using
supervised learning to precisely classify BM according to the
primary tumor of origin. In agreement with the presumptive
histopathological diagnosis, BrainMETH accurately determined
the origin of BM in patients with multiple primary tumors or
with inconclusive anatomical pathologic evaluation. We found
that these regions also exhibited good classification performance
in identifying melanoma, breast, and lung primary tumors. This
observation suggests that CpG sites with good discrimination
potential for BM types may overlap genomic regions associated

BrainMETH
classifier A

BrainMETH
classifier B

Relevant genomic regions 

(Illumina probes) (Genomic regions) (qMSP primers) 

Primary brain tumors 
vs brain metastases

cg25814383, cg26306329,
cg20604286, cg09962377, 

cg10982851

Lung cancer BM vs
breast cancer BM vs
melanoma BM

Breast cancer BM 
Molecular subtypes

BrainMETH
classifier C

Classifier
application

a

b

c

cg10125195, cg07186138,
cg12659952, cg14074944,
cg00628697, cg23067082

chr12:55,028,545; chr22:39,410,397; 
chr6:10,410,917; chr9:117,820,838; 
chr21:38,630,342; chr12:7,073,180

BCBM-B, BCBM-C,
LCBM-A, LCBM-C, 

MBM-B, MBM-C

cg26953453, cg04066019,
cg07200280, cg23469448,
cg01849970, cg02695677,

cg09086615

chr12:54,346,784; chr3:16,554,466;
chr3:16,554,619; chr12:114,232,746;
chr5:141,031,209; chr7:130,673,539;

 chr4:127,966,639

HR+/HER2−A, HR+/HER2−B, 
HR+/HER2−C, HER2+A
HER2+B, HR−/HER2−B

HR−/HER2−C

chr19:19,336,240; chr4:124,400,196;
chr2:58,273,438; chr16:522,008; 

chr7:4,747,167

GBM-A, GBM-B, 
GBM-D, BM-C, 

BM-D

Supplementary Data 3

Supplementary Data 6

Supplementary Data 3

Supplementary Data 6

Supplementary Data 10

Supplementary Data 6

Supplementary Data 10 Supplementary Data 10

Supplementary Data 3

Fig. 6 Summary of the BrainMETH classifiers. a–c BrainMETH classifiers designed to discriminate between primary and metastatic brain tumors (Classifier
A), among BM from different tumor of origin (Classifier B), and among BCBM from different molecular subtypes (Classifier C). A set of relevant Illumina
probes, genomic regions, and validated primer sets by qMSP is provided for each step of the BrainMETH classifier
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with tumor-type-specific epigenomic signatures. Most impor-
tantly, we found that qMSP evaluations of three regions using
DNA obtained from microdissected FFPE tissues showed a very
good classification performance for BM specimens according to
the tissue of origin. These regions were therefore selected for the
second step of the BM DNAm classifier (BrainMETH class B;
summarized in Fig. 6b).

Finally, once the diagnosis of the tumor of origin has been
established, it is crucial to identify molecular features that can
stratify patients and guide therapeutic decisions. Undoubtedly,
the expression of HR and HER2 are the most meaningful pre-
dictive factors for the treatment of BCBM40. In clinical practice,
therapeutically relevant subtypes are rarely evaluated in BCBM
specimens and usually inferred from the IHC profiling of the
primary tumor or extra-cranial metastases. However, significant
discrepancies have been recently reported in the expression sta-
tuses of ER and HER2, the mutational burden, and gene
expression profiles between matched primary and BCBM speci-
mens41–44. Therefore, if feasible, it is currently recommended to
perform a histopathological evaluation of the metastatic lesions to
confirm the therapeutic subtype by at least reassessing the
expression of HR and HER240. To complement the conventional
diagnosis, we explored the utility of DNAm profiling to classify
BCBM into three therapeutically relevant subtypes (HR
+/HER2−, HER2+ , and HR−/HER2−). Overall, the BCBM
subtype DNAm classifiers (BrainMETH class C) exhibited a
substantially lower performance than the BM tissue of origin
classifiers (BrainMETH class B). This difference may be influ-
enced by the much larger difference in global DNAm patterns,
and thus discriminatory power, between cancers from different
tissues than between different breast cancer subtypes, in addition
to the smaller sample size used to construct the BCBM subtype
classifiers. Additional studies including new cases may improve
the BCBM subtype classifiers, thereby enhancing their potential
utility as a clinical application. In spite of this limitation, the
BCBM subtype DNAm classifiers may still be useful as a sup-
plement to the current histopathological diagnostic process. We
identified a set of regions that accurately classified BCBM with
initially unknown IHC profiling into clinically relevant subtypes.
Since these classifiers only needed a small number of regions to
achieve good accuracy, we conjecture that a qMSP assay for
BCBM subtype determination may serve as a valuable tool in the
clinical setting. We found that the combination of six regions
twice that required for the BM tumor of origin BrainMETH
classifier (Class B), showed a very good classification potential for
each BCBM subtype. To facilitate the development of histomo-
lecular applications of the BrainMETH, we provide a list of
genomic regions with good classification performance for BCBM
therapeutic subtypes that can be inexpensively evaluated using
FFPE tissues (BrainMETH class C; summarized in Fig. 6c).

In summary, this study provides a comprehensive character-
ization of BrainMETH, a DNAm-based classifier of metastatic
brain tumors. Data presented here further demonstrate the sig-
nificant potential of DNAm profiling as a valuable molecular
diagnostic tool, specifically for the diagnosis of intracranial
metastases. IHC is a well-established, adaptable tool with a high
success rate for the diagnosis of intracranial neoplasms. Although
IHC remains the cornerstone of tumor diagnostics, we believe
that the BrainMETH classifiers could serve as an effective ancil-
lary tool in accurately diagnosing challenging cases; specifically,
patients with occult primary tumors or poorly differentiated BM
lesions. Furthermore, we believe that the quantitative and
objective nature of the BrainMETH classifiers may help mitigate
the level of inter-observer and intra-observer variability in IHC
interpretation. Therefore, the BrainMETH classifiers, along with
the recently reported primary CNS tumor DNAm classifiers13 can

complement and assist the current diagnostic algorithm to
improve objectivity in classifying different brain tumors. The
BrainMETH classifiers assayed on DNA from FFPE tissues
demonstrated good classification performance for BM originating
from the three primary tumor types which most frequently
metastasize to the brain. Further studies are required to assess the
usefulness of DNAm classifiers in diagnosing patients with pri-
mary tumors with a less frequent incidence of BM, such as kid-
ney, colorectal and ovarian cancers. Additional DNAm analyses
using paired primary and BM specimens will continue to enhance
our understanding of brain metastatic progression and identify
novel prognostic and therapeutic applications. Despite this need
for a more expansive assessment, the findings of this study
represent the first steps in expanding the available tools for
making an accurate diagnosis, which is crucial to determining
prognosis and guiding therapeutic decisions in patients with BM.

Methods
Patients and tissue specimens processing. In a multi-institutional effort, 165
patients with operable primary or metastatic brain tumors diagnosed at the Pro-
vidence Saint John’s Health Center (Santa Monica, USA), Melanoma Institute of
Australia (Sydney, Australia), and the Swedish Medical Center (Seattle, USA) were
enrolled for this study. All clinical-demographic data and patient-derived samples
were collected under research protocols approved by the joint Institutional Review
Board of Providence Saint John’s Health Center/John Wayne Cancer Institute, the
Western Institutional Review Board, Institutional Review Board of Swedish Med-
ical Center, and the Sydney Local Health District (Royal Prince Alfred Hospital
Zone) Human Ethics Review Committee. All patients signed an informed consent
before joining the study. The experiments were performed in accordance with the
World Medical Association Declaration of Helsinki and the National Institutes of
Health Belmont Report. Tissues were de-identified and coded according to
recommendations of the Health Insurance Portability and Accountability Act to
ensure patient confidentiality.

Histopathological evaluation and genomic DNA extraction. Representative
FFPE tissue block for each brain tumor specimen was selected by the pathologist from
the Pathology Departments of the three institutions involved in the study. Neuro-
pathologists reviewed tissue slides stained with hematoxylin & eosin for all specimens
and identified areas with tumor cell enrichment (tumor purity) higher than 70%.
After deparaffinization, hematoxylin staining was performed in serial tissue sections
of 8 micrometerthick, and tumor tissues were needle microdissected from consecutive
FFPE slides. Genomic DNA was isolated using ZR FFPE DNA MiniPrep (D3066;
Zymo Research, Irvine, CA) following the manufacturer’s instructions.

Ninety-six BM specimens from 94 patients with BCBM (n= 30), lung cancer
(LCBM; n= 18), cutaneous melanoma (MBM; n= 44), and patients with both
primary breast cancer and primary lung cancer (n= 4), were evaluated using the
Illumina Infinium HumanMethylation 450K BeadChips (HM450K; Illumina Inc.,
San Diego, CA, USA). An extended description of the DNAm profiling experiments
described here is available in our related data descriptor45. Briefly, one µg of
genomic DNA was bisulfite converted using the EZ DNA Methylation-Direct Kit
(D5021, Zymo Research Irvine, CA, USA). The efficiency of the bisulfite conversion
was evaluated using the MethyLight assay for a panel of markers46. All the samples
passing the quality control test were whole-genome amplified, enzymatically
fragmented and repaired using the Infinium HD FFPE DNA Restore kit (WG-321-
1002, Illumina Inc., San Diego, CA, USA). Finally, the fragmented and restored
sodium bisulfite-modified DNA specimens were hybridized into the HM450K
BeadChips and scanned using the Illumina iScan microarray scanner following the
manufacturer’s recommendations (Illumina Inc., San Diego, CA, USA).

Quantitative-methylation-specific PCR. Sodium bisulfite modification was per-
formed on 200–500 nanograms of genomic DNA using EZ DNA Methylation-
Direct (D5021, Zymo Research, Irvine, CA, USA) following manufacturer
recommendations. Target DNAm of GBM and BM genomic regions was per-
formed using primers sets described in Supplementary Data 3, 6, and 10. The
quantitative amplification of methylated and unmethylated alleles was performed
in CFX96 Touch™ Real-Time PCR detection system (185–5196; Bio-Rad Labora-
tories, Irvine, CA, USA), and the ΔCt (ΔCt=mean Ct methylated – mean Ct
unmethylated) was calculated for each CpG site. The relative DNAm level was
established by using the 2−ΔCt method. The percentage of DNAm was estimated
by using a logarithmic equation derived from the analysis of a standard curve of
serial dilutions of the universal methylated control (D5014, Zymo Research, Irvine,
CA, USA) in universal unmethylated control (D5014, Zymo Research, Irvine, CA,
USA) for each genomic region. Unless otherwise indicated in the text, BM type or
subtype-specific DNAm scores were established as the average DNAm level for the
BM type or subtype-specific region(s) minus the average DNAm level for the
contrasting BM type or subtype-specific region(s).
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Locus-specific bisulfite sequencing. Ten genomic regions with poor qMSP per-
formance were amplified with sodium bisulfite conversion-dependent primers
(Supplementary Data 3, 6, and 10). After amplification of methylated and unme-
thylated universal controls (D5011-1 and D5014-1, respectively, Zymo Research,
Irvine, CA, USA), PCR products were purified with the QIAquick PCR Purification
Kit (28106, Qiagen, Hilden, Germany) and subsequently verified in a 2.2% agarose
Flashgel (57032, Lonza, Rockland, ME, USA). Successfully amplified samples were
then quantified by UV absorption spectrophotometry and sequenced using internal
sequencing primers (Supplementary Data 3, 6, and 10) using the Eurofins MWG
Operon PlateSeq service (Eurofins Genomics, Louisville, KY). Sequencing results
were then visualized using Chromas Lite v2.6.5 (Technelysium, Brisbane, Australia).

Histopathological and IHC evaluation of BCBM specimens. The BCBM speci-
mens were evaluated at the CLIA-certified Department of Pathology, Providence
Saint John’s Health Center, accredited by the College of American Pathologists
(CAP). The BCBM samples were classified into molecular subtypes according to
the expression levels of ER and PgR by IHC. HER2 was assessed by IHC and/or
in situ hybridization (ISH) assays. The FFPE tissue slides were sectioned at 4
micrometer thick and mounted on plus-coated glass slides, and immunohisto-
chemically stained using a Ventana BenchMark ULTRA automated slide stainer
(Roche Diagnostics, Indianapolis, IN, USA). Antibodies used were anti-Estrogen
Receptor (SP1, dilution 1:1000, #790-4324, Ventana Medical Systems, Tucson, AZ,
USA), anti-Progesterone Receptor (1E2, dilution 1:1000, #790-2223, Ventana
Medical Systems, Tucson, AZ, USA) and PATHWAY anti-HER-2/neu (4B5,
dilution 1:166, #790-2991, Ventana Medical Systems, Tucson, AZ, USA). The
scoring criteria for these markers were based on the ASCO/CAP guidelines47,48.
Briefly, ER and PgR were considered positive if there was staining of the nucleus in
at least ≥ 1% of the tumor cells in the sample. HER2 was considered positive for
IHC 3+ or ISH amplified if single-probe average HER2 copy number > 6.0 signals/
cell or dual-probe HER2/CEP17 ratio ≥ 2.0. BCBM specimens were grouped
according to the expression of these routinely clinically evaluated markers into a-
HR+/HER2−, b- HR any/HER2+ (HER2+), and c- HR−/HER2−.

Access to NCBI GEO DNA methylation datasets. HM450K data generated from
100 normal brain tissues; including 25 frontal cortex, 25 superior temporal
gyrus, 25 entorhinal cortex, and 25 cerebellum specimens (GSE43414). Addi-
tionally, DNA methylomes generated from 152 GBM specimens (GSE85539) and
59 LGG specimens from patients enrolled in the phase III study EORTC 26951
(GSE48461). These data were integrated with the DNA methylomes from 16
melanoma BM (GSE44661)15,16. These datasets were accessed using the R/Bio-
conductor GEOquery package v2.46.13, normalized using the SWAN method49

on the R/Bioconductor wateRmelon package v1.19.1, and annotated using the R/
Bioconductor FDb.InfiniumMethylation.hg19 package v2.2.0. DNAm data (.idat
files) from 2085 primary CNS tumors (GSE90496) were combined and
normalized with DNAm data from our BM cohort using the Noob
background correction (processNoob) function in the R/Bioconductor minfi
package v1.18.4.

Access to TCGA data and classification of patients. Clinical data for GBM,
breast cancer, lung cancer, and cutaneous melanoma patients were downloaded
from the Broad GDAC Firehose website (https://gdac.broadinstitute.org/) in April
2017. Genome-wide DNAm data for all these patients were retrieved from the
National Cancer Institute Genomic Data Commons Portal (https://gdc.cancer.
gov/) using the R/Bioconductor TCGAbiolinks package v1.2.550. We selected 60
patients with GBM from the TCGA-GBM project with an absolute tumor purity
higher than 70% and genome-wide DNAm level assessed by the HM450K plat-
form. This cohort included patients with demographic characteristics paired with
the cohort of patients with BM and a representative sampling of the GBM mole-
cular subtypes. Of these cases, 7% had a high glioma CpG island methylation
phenotype (G-CIMP), which is similar to the reported clinical frequency of G-
CIMP25. We selected 380 primary lung cancer specimens corresponding to ade-
nocarcinoma (n= 136) and squamous (n= 171) from the TCGA-LUAD and
TCGA-LUSC projects, respectively. From the combined list of TCGA lung cancer
patients (n= 1,026), we excluded specimens obtained from patients with Stage IV
(n= 32), unknown stage (n= 3), T4 from the American Joint Committee on
Cancer (AJCC) 5th or 6th edition (n= 27; since these cases can belong to the
category of malignant pleural effusion currently considered M1a on the AJCC 7th
edition), recurrent sites (n= 2), unavailable location (n= 2), and tumor purity <
70% (n= 580). Additionally, we selected 83 primary cutaneous melanoma speci-
mens from 466 cases included in the TCGA-SKCM project. Our exclusion criteria
included specimens obtained from regional cutaneous or subcutaneous lesions
including satellite and in-transit metastases (n= 75), regional lymph node
metastases (n= 220), distant organ metastases (n= 67), unavailable location (n=
2), primary melanoma lesions from patients with stage IV (n= 3), unavailable
AJCC 7th edition stage (n= 2), and tumor purity < 70% (n= 16). We identified
and classified primary breast cancer specimens from the TCGA project with
complete IHC information (n= 914) and HM450K evaluation into 1-HR
+/HER2− (n= 443), 2-HRany/HER2+ (HER2+, n= 83), and 3-HR−/HER2−

(n= 117). Briefly, from the 1105 breast cancer samples included in the TCGA-
BRCA database, we excluded specimens obtained from metastatic sites (n= 7),
male patients (n= 12), unavailable gender information (n= 2), and unavailable or
indeterminate ER, PgR or HER2 statuses (n= 170). Cases with discordant results
for HER2 expression by IHC and ISH were individually evaluated using the
information provided in the pathological reports, and classified according to
ASCO/CAP guidelines (n= 15)48.

Statistical and bioinformatics analyses. Tumor purity of all TCGA samples was
assessed using the CPE method26. Differentially methylated genomic regions
among the groups, as well as a metric of the variance explained by each group,
were identified using the F-Ratio and F-Distribution based on the hypothesis test
for the one-way ANOVA. All P-values were two-sided and corrected for multiple
comparisons using either Bonferroni or the FDR correction methods, as indicated
in each case. DNAm data were dichotomized into methylated (β-value ≥ 0.9) and
unmethylated (β-value ≤ 0.1) categories. Receiver operating curves (ROC) were
used to estimate the sensitivity and specificity of the brain tumor classification
method. The AUC was calculated for each ROC to evaluate the accuracy of brain
tumor classification based on DNAm observed in genomic regions. The gene
ontology enrichment analyses for differentially methylated genomic regions were
performed using the Genomic Regions Enrichment of Annotations Tool (GREAT)
v3.0.0 with the basal plus extension association rule considering proximal (up to 5
kb) as well as distal (up to 1 Mb) genes, only including curated regulatory
domains27. HCL analyses were performed using Euclidean distance and average
linkage clustering to identify relationships between genomic regions and brain
tumors. PCA was used to evaluate the overall variability, identify possibly corre-
lated variables, and to visualize the distance between selected brain tumor DNAm
profiles. The robustness of phylogenetic tree reconstruction was determined by
bootstrap resampling using 1,000 iterations using HCL analyses. The HCL, PCA,
terrain maps, and bootstraps analyses were performed using the MultiExperiment
Viewer v4.951. Phylogenic trees were visualized using the FigTree Viewer v1.4.3.
The t-SNE technique52,53 and the UCSC TumorMap visualization tool54 were
employed to generate unsupervised clustering of the entire BM cohort (n= 96)
along with a reference cohort of primary CNS tumors (GSE90496, n= 2085). The
t-SNE was generated using the Rtsne R package v0.13 with theta= 0 for exact t-
SNE and the TumorMap was generated using the online application (https://
tumormap.ucsc.edu/) with the standard configuration. The multivariate DCA was
used to find the most relevant genomic regions whose DNAm level was associated
with each BCBM molecular subtype. DCA scores were established using the dec-
orana function contained in the R vegan package v2.3.5 and visualized using the
COA function on the MultiExperiment Viewer v4.951. The nearest shrunken
centroids (NSCs) algorithm (initial parameters: delta > 5, minimum correlation=
0.5, number of bins= 24) was applied to identify genomic regions that more
accurately predict BCBM molecular subtypes. The NSCs were computed using the
function pamr.train contained in the R pamr package v1.55. DNAm classifiers to
predict tumor of origin and BCBM molecular subtypes were trained and tested
using the RF algorithm32 applying the RF implementation for MATLAB v0.02
downloaded from http://code.google.com/p/randomforest-matlab/. The RF classi-
fication models were run with 5000 trees each, default settings for the other
parameters, and were trained and tested using a three-fold stratified CV strategy.
Using only the samples in the training set, we first selected the 10,000 genomic
regions which showed the largest variation in the median β-value across the dif-
ferent classes to train an RF model. Next, we selected the half of the genomic
regions with the largest feature importance scores and retrained the RF using only
this half of the regions. This process was iterated in 15 incremental steps,
approximately halving the size of the feature set at each step, resulting in the 15th
iteration in an RF classifier trained on only one genomic region. Each of the 15 RF
classifiers was evaluated using the samples in the test set. This iterative backward
elimination procedure was repeated using each of the three folds as the test set.
Note that the test samples were never used for training. The whole procedure was
replicated 100 times. The same procedure was repeated with permuted class labels
for each of the 100 repeats in order to build a distribution of the performance of a
random classifier. The feature importance was measured as the Gini impurity score
used for the calculation of splits in the decision tree during training of the RF.
Specifically, the reported feature importance scores are the mean decreases in the
Gini impurity score. This is the standard method to calculate and report feature
importance metrics in RF.

Data availability
All HM450K raw and normalized data that support the findings of this study have been
deposited in the NCBI’s Gene Expression Omnibus (GEO), and datasets are accessible
through the series records GSE108576 and GSE44661. A detailed explanation of these
datasets is available in our related data descriptor45. All other data that support the
findings of this study are available from the corresponding author upon request.
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