
 1

mzMLb: a future-proof raw mass spectrometry

data format based on standards-compliant mzML

and optimized for speed and storage requirements

Ranjeet S. Bhamber1, Andris Jankevics,2, Eric W Deutsch3, Andrew R Jones4,

Andrew W Dowsey1*

1 Department of Population Health Sciences and Bristol Veterinary School, University

of Bristol BS8 2BN, United Kingdom

2 School of Biosciences and Phenome Centre Birmingham, University of Birmingham,

Birmingham B15 2TT, United Kingdom

3 Institute for Systems Biology, Seattle, Washington 98109, United States

4 Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United

Kingdom

* Corresponding Author; andrew.dowsey@bristol.ac.uk; +44 (0) 117 3319193

Keywords: Proteomics Standards Initiative, mzML, Mass Spectrometry, proteomics,

metabolomics, data compression, HDF5

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.02.13.947218doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.13.947218
http://creativecommons.org/licenses/by/4.0/

 2

Abstract

With ever-increasing amounts of data produced by mass spectrometry (MS) proteomics and

metabolomics, and the sheer volume of samples now analyzed, the need for a common open

format possessing both file size efficiency and faster read/write speeds has become paramount

to drive the next generation of data analysis pipelines. The Proteomics Standards Initiative

(PSI) has established a clear and precise XML representation for data interchange, mzML,

receiving substantial uptake; nevertheless, storage and file access efficiency has not been the

main focus. We propose an HDF5 file format ‘mzMLb’ that is optimised for both read/write

speed and storage of the raw mass spectrometry data. We provide extensive validation of write

speed, random read speed and storage size, demonstrating a flexible format that with or without

compression is faster than all existing approaches in virtually all cases, while with compression,

is comparable in size to proprietary vendor file formats. Since our approach uniquely preserves

the XML encoding of the metadata, the format implicitly supports future versions of mzML

and is straightforward to implement: mzMLb’s design adheres to both HDF5 and NetCDF4

standard implementations, which allows it to be easily utilised by third parties due to their

widespread programming language support. A reference implementation within the established

ProteoWizard toolkit is provided.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.02.13.947218doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.13.947218
http://creativecommons.org/licenses/by/4.0/

 3

Introduction

Through an extensive industry-wide collaborative process, in 2008 the Proteomics Standards

Initiative (PSI) established a standardised XML (Extensible Markup Language) representation

for raw data interchange in mass spectrometry (MS)1, ‘mzML’, further building upon concepts

defined in earlier formats mzData and mzXML2 formats. mzML is now the pervasive format

for interchange and deposition of raw mass spectrometry (MS) proteomics and metabolomics

data3. However, in order to provide a detailed, flexible, consistent and simple standard for the

sharing of raw MS data, it was designed around a generic ontology for its representation at the

expense of inefficient storage and file access. Two data types are contained within raw mass

spectrometry (MS) datasets: (a) numeric data i.e. mass over charge and

spectral/chomatographic intensities; and (b) metadata related to instrument and experimental

settings. mzML encodes these data types within a rich, schema-linked XML file, where the

metadata is accurately and unambiguous annotated using the PSI-MS controlled vocabulary4

(CV). However, one of the bottlenecks of mzML’s design is that it is a text-based XML file

format and all numeric spectrum data are converted into text strings using Base64 encoding5.

Optionally, the numeric data can be zlib6 compressed before encoding, but nevertheless, the

size of output files are still 4- to 18-fold higher than the original proprietary vendor format.

A number of technologies7–9 have been developed by various laboratories to address the

inherent performance/practical difficulties of utilizing the mzML format for large volume

biological sampled, high throughput data analysis. The first approach to address the

performance and file size issues of mzML was mz57. At the core of mz5 is HDF510

(Hierarchical Data Format version 5), originally developed by the National Center for

Supercomputing Applications (NCSA) for the storage and organization of large amounts of

data. HDF5 is a binary format, but is similar to XML in the sense that files are self-describing

and allow complex data relationships and dependencies. An HDF5 file allows multiple datasets

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.02.13.947218doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.13.947218
http://creativecommons.org/licenses/by/4.0/

 4

to be stored within it in a hierarchical group structure akin to folders and files on a file system.

The two primary objects represented in HDF5 files are ‘groups’ and ‘datasets’. Groups are

container constructs that are used to hold datasets and other groups. Datasets are

multidimensional arrays of data elements of a specific type e.g. integer, floating point,

characters, strings, or a collection of these organised as compound types. Both objects support

metadata in the form of attributes (key-value pairs) that can be assigned to each object; these

attributes can be of any data type. Using groups, datasets and attributes, complex structures

with diverse data types can be efficiently stored and accessed. Each dataset can optionally be

subdivided into regular ‘chunks’ to enable more efficient data access, as chunks can be loaded

and stored in HDF5’s cache implementation for subsequent repeated access. By changing the

chunk size parameter, it is possible to adjust HDF5 for different applications, e.g. fast random

access where file size does not matter, or larger chunks for an overall smaller compressed file

size.

Compared with mzML, mz5’s implementation in HDF5 yields an average file size reduction

of 54% and increases linear read and write speeds 3–4-fold7. However, mz5 involves a

complete reimplementation of mzML accomplished through a complex mapping of mzML tags

and binary data to compound HDF5 datasets that mimic tables in a relational database. This

structure would need to be explicitly altered to accommodate future versions of mzML. The

mapping also precludes a Java implementation using the HDF5 Java API as compound

structures are extremely slow to access with this API. Moreover, some implementation choices

are not supported by the Java API at all, specifically the variable-length nested compound

structures mz5 uses to describe scan precursors.

The mzDB format8 uses an alternative database paradigm, the lightweight SQLite relational

database. mzDB’s main mechanism of increasing random read performance is in organising

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.02.13.947218doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.13.947218
http://creativecommons.org/licenses/by/4.0/

 5

data in small two-dimensional blocks across multiple consecutive spectra (i.e. along both the

m/z and retention time axis). In comparison with XML formats, mzDB saves 25% of storage

space and improves access times by two-fold or more, depending on the data access pattern.

Due to its unique data indexing and accessing scheme, three different software libraries have

been created to handle MS datasets, two of which are designed to create and handle MS Data-

dependent acquisition (DDA), the first “pwiz-mzDB” and the second, “mzDB-access”. The

third instance named “mzDB-Swath” is specifically designed for the Data-Independent

Acquisition (DIA) MS-SWATH technique. In order to utilize mzDB for other or future

methods, these libraries will need to be extended. In addition, mzDB does not compress the

text metadata, which are stored in dedicated “param_tree” fields in XML format with specific

XML schema definitions (XSDs). mzDB also stores raw datasets uncompressed, but

compression can be achieved through an SQLite extension; however, this extension requires a

commercial license for both compression and decompression, and comparative results were not

presented in the manuscript. As an alternative, a “compressed fitted” mode is proposed which

centroids each peak and records the left and right Half Width at Half Maximum (LHW/RHW)

for reconstruction; nevertheless, centroiding is insensitive to low-intensity and overlapping

peaks, hence much information is discarded in the process, which may affect results when this

loss of data is propagated through downstream analysis pipelines.

The imzML data format11 is predominantly aimed at storing very large mass spectrometry

imaging datasets and does so through modest modifications to the mzML format. At the core

of this approach is the splitting of XML metadata from the binary encoded data into separate

files (*.imzML for the XML metadata and *.ibd for the binary data) and linking them

unequivocally using a universally unique identifier (UUID). imzML also introduces new

controlled vocabulary (CV) parameters designed specifically to facilitate the use of imaging

data. These additional imzML CV parameters include x/y position, scan direction/pattern, pixel

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.02.13.947218doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.13.947218
http://creativecommons.org/licenses/by/4.0/

 6

size are stored in the *.obo file, following OBO format 1.2 (which is text based format used to

describe the CV terms). The approach is designed to enable easier visualisation of the data

using third party software.

Unlike mz5, mzDB and imzML, Numpress9 is an encoding scheme for mzML and not a new

or modified file format; its main focus on improving the file size is based on a novel method

to compress the binary data in the mzML file before Base64 encoding (note: it does not

compress the XML metadata). It accomplishes this by encoding the three common numerical

data types present in mzML (mass to charge ratios – m/z, intensities and retention times) using

a variety of heuristics. The first, Numpress Pic (numPic), is intended for ion count data (e.g.

from Time of Flight) and simply rounds the value to the nearest integer for storage in truncation

form. The second, Numpress Slof (numSlof), is for general intensity data and involves a log

transformation followed by a multiplication by a scaling factor and then conversion and

truncation to an integer. This ensures an approximately constant relative error; the authors

demonstrate that choosing the threshold to yield a relative error of < 2×10-4 did not noticeably

affect downstream analysis results. The third approach, Numpress Lin (numLin), is intended

specifically for m/z values and uses a fixed-point representation of the value, achieved by

multiplying the data by a scaling factor and rounding to the nearest integer. Likewise, a relative

error of approximately < 2×10-9 was deemed not to unduly affect downstream processing.

Taken together, Numpress was shown to reduce mzML file size by around 61%, or

approximately 86% if the Numpress spectral output was additionally zlib compressed.

In the proposed mzMLb format, we adopt the HDF5 format10 also used by mz5, which is well-

established for high-volume data applications. However, rather than using a complex and

inflexible mapping between mzML and HDF5, we propose a simple hybrid format where the

numeric data are stored natively in HDF5 binary while the metadata are preserved as fully PSI-

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.02.13.947218doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.13.947218
http://creativecommons.org/licenses/by/4.0/

 7

standard mzML and linked to the binary in a manner similar to imzML - but stored within the

same HDF5 file. Furthermore, we use only core features of HDF5, making our format

compatible with NetCDF412 readers and writers (including their native Java library). This

enables third party bioinformatics tool developers to import and export data written in mzMLb

using libraries already available on a wide variety of platforms and programming languages in

a straightforward way. Taking advantage of inbuilt HDF5 functionality, we also implement a

simple predictive coding method that enables efficient lossy compression that results in file

sizes comparable to Numpress but is much easier to implement. Alternatively, Numpress

compressed data can be stored in mzMLb without modification. We provide a reference

implementation for mzMLb in the popular ProteoWizard toolset, available at

https://github.com/biospi/pwiz.

Methods

The fundamental design of mzMLb is shown in Figure 1, with the full specification given in

the supplementary material. As illustrated, an mzMLb HDF5 file is composed of datasets for

different data types (numerical and text based) contained within an mzML file. In this example

with our ProteoWizard implementation, the data is stored in four HDF5 datasets:

Chromatogram start scan times (chromatogram_MS_1000595_double); chromatogram

intensities (chromatogram_MS_1000515_float); spectrum m/z’s

(spectrum_MS_1000514_double); and spectrum intensities (spectrum_MS_1000515_float).

These datasets are accompanied by native HDF5 version mirroring the indexed mzML schema

(e.g. mzML_chromatogramIndex and mzML_chromatogramIndex_idRef). It illustrates how

mzMLb utilises the advantages of mzML (XML) and propriety binary vendor formats by

combining the positive values of both approaches while mitigating the negative traits.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.02.13.947218doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.13.947218
http://creativecommons.org/licenses/by/4.0/

 8

Figure 1. mzMLb Internal data structure. All data is stored using standard HDF5 constructs,

PSI-standard mzML is maintained, full XML metadata is stored, along with binary data in

separate HDF5 datasets. Storage of the chromatogram and spectral data (scan start times, m/z’s

and intensities) is flexible and self-described in terms of floating-point precision and layout,

relying simply on the dataset name and offset being specified within the <binary> tag for each

chromatogram and spectrum in the mzML XML metadata.

The mzML XML metadata is stored inside a HDF5 character array dataset ‘mzMLb’. This is

identical to the mzML format except: (a) The binary data is not stored within the <binary> tags;

instead, the binary tag provides attributes for the name of the HDF5 dataset containing the

binary data, and the offset within the HDF5 dataset where the data is located. This mechanism

mzMLb

chromatogram_MS_1000595_double

XML

spectrumList

chromatogramList

Spectrum = # mzML_spectrumIndex

Chromatogram = # mzML_chromatogramIndex

chromatogram_MS_1000515_float

mzML_chromatogramIndex

mzML_chromatogramIndex_idRef

mzML_spectrumIndex

spectrum_MS_1000514_double

spectrum_MS_1000515_float

mzML_spectrumIndex_idRef

XML (mzML)
<?
 xml
?>

+

-

Human readable

Slow data extraction
+ Supports meta data

- Limited compression

BINARY (propiertary)

+

-

Fast data access

Based on propiertary standards
+ Efficient data storage

- Meta data can't be included

+ Optimised for large data
+ Open standard and free

 Hierarchical data structure+

Support for compression+
+ Fast in-kernel queries
+ XML meta data support
- Not human readable

Suitable for visualisation+
mzMLb

+

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.02.13.947218doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.13.947218
http://creativecommons.org/licenses/by/4.0/

 9

is also used in imzML, and results in valid mzML. (b) If mzML spectrum and chromatogram

indices are desired (i.e. an <indexedmzML> block in mzML), they are represented instead by

native HDF5 datasets ‘mzML_spectrumIndex’ and ‘mzML_chromatogramIndex’, which are

one dimensional arrays of 64-bit integers pointing to the start byte of each

spectrum/chromatogram in the ‘mzMLb’. In addition, spectrum/chromatogram identifiers, spot

ID (an identifier for the spot from which this spectrum was derived, if a MALDI or similar run)

and scan start time indices can be specified as further HDF5 datasets (see supplementary

material).

All numerical data that is Base64 encoded in mzML (m/z’s, intensities, etc.) is instead stored

in mzMLb as native HDF5 datasets, either as floating-point (32-bit or 64-bit), or as a generic

byte array if Numpress encoded. As each <binary> tag in the ‘mzMLb’ dataset specifies the

name of the dataset containing the data, each mzMLb implementation has the freedom to

organise the binary data as it wishes. Since offsets can be specified, data from multiple spectra

can also be co-located within the same HDF5 dataset, as long as they are of the same data type.

This enables mzMLb to harness efficiency gains from HDF5 chunk-based random access and

caching schemes, and also reduces file size as data will then be compressed across spectra

(which is not possible in mzML). In our ProteoWizard reference implementation of mzMLb,

chromatogram and spectrum data are kept apart but otherwise all data for a specific controlled

vocabulary parameters (CVParam) are stored in the same dataset. For example, in the dataset

in Figure 1 spectrum intensity values for all spectra are stored in dataset

‘spectrum_MS_1000515_float’.

We also implemented a simple coding scheme that combines data truncation, a linear

prediction method and use of HDF5’s inbuilt ‘shuffle’ filter to improve the results of a

subsequent compression step. The aim of this approach is to exploit the way numerical floating-

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.02.13.947218doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.13.947218
http://creativecommons.org/licenses/by/4.0/

 10

point data is represented in binary natively on modern computing hardware, resulting in much

better compression ratios. The method is lossy but like Numpress is designed only to add

relative error at very small parts per million that does not affect downstream processing.

Compared to Numpress, it is much easier to implement by third party developers as the

encoding and decoding can be implemented in a single line of code.

In order to fully appreciate its function and implementation, a basic understanding of how

decimal real numbers are represented as binary floating-point numbers is required. A number

in double-precision (64-bit) or single-precision (32-bit) binary floating point13 format consists

of three parts; a sign, an exponent and a mantissa, as represented in Figure 2. The sign bit

represents a negative or positive number if set or unset respectively (blue binary bit in fig. 2).

The exponent bits represent the scale of the number, and hence specifies the location of the

decimal point within the number (orange binary bits in fig. 2). Finally, the mantissa (green

binary bits in fig. 2) expresses the fractional part of the number - the number of bits in the

mantissa hence gives you the number of significant figures. Having more bits in the exponent

(11 bits in double precision compared to 8 bits in single precision) allows you to represent a

wider range of numbers, whereas more bits in the mantissa (e.g. there are 52 bits in double-

precision versus 23 bits in single-precision) allows more precision. If full precision is not

required, then a large number of bits are stored unnecessarily, resulting in unnecessary memory

and storage use. This is the case for a significant amount of the numerical data stored in

conventional mzML files.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.02.13.947218doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.13.947218
http://creativecommons.org/licenses/by/4.0/

 11

Figure 2. (a) Visual representation of IEEE 754 Double-precision (64 bit) floating point format

and IEEE 754 Single-precision (32 bit) floating point forma, zeros are represented by empty

boxes and ones are populated. (b) An array of floating point numbers stored conventionally;

yellow bytes can be compressed. (c) The same array truncated and stored using the HDF5

shuffle filter leads to higher compressibility.

We exploit this fact by implementing a simple lossy truncation scheme based on reducing

the numbers of mantissa bits used in the floating point format to represent m/z and intensity

values by zeroing insignificant bits, with an example shown in Table 1. Here we can see that

we do not observe an appreciable drop in the parts-per-million accuracy of the decimal number

until after we remove 21 bits from the mantissa, and it can be seen how zeroing more and more

bits increases the error as we pass the single-precision (23-bits) mantissa level.

a)

b) c)

Sign Exponent Mantissa

64-bit
Decimal value: 74.08439833, 0 error
Float Format: +0.7408439833x102

Decimal value: 74.084396, 2.6x10-6 error
Float Format: +0.74084396x102

32-bit

+ x102 0.7408439833
1 1 1

1 1 1

1 1 1 1 11 11 1 1

1
1111111111 1

1 1111 1 111 1

64
65

127
128

64
65

127
128

65

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.02.13.947218doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.13.947218
http://creativecommons.org/licenses/by/4.0/

 12

Table 1. Effect of changing the number of bits representing the mantissa in a floating-point

number and the associated error. The mantissa of a double-precision (64-bit) floating-point

number (52 bits in the mantissa), the mantissa of a single-precision (32-bit) floating-point

number (23 bits in the mantissa) are both, highlighted in green accordingly.

In order to translate our truncation approach into improved zlib6 compression it is necessary

to employ HDF5 byte shuffling. In most formats, floating point numbers are stored

consecutively on disk, so zeroed mantissa bits appear in short bursts, as shown in Figure 2b.

The HDF5 shuffle filter rearranges the byte ordering of the data so that it is stored transversely

rather than longitudinally, as shown in Figure 2c. This leads to large numbers of consecutive

zeros that can be compressed extremely well.

Moreover, further gains are possible by transforming the data so that consecutive values or sets

of values are identical, as zlib is designed to compress away repeated patterns. Towards this

goal, the mz5 format uses a ‘delta’ prediction scheme that stores the difference between

consecutive data points, rather than the data points themselves. This results in floating point bit

patterns (Figure 2) that are less likely to change between consecutive data points and hence are

more likely to be compressed. We present an improved technique termed ‘mzLinear’ that

extends this approach to a linear extrapolation predicting each data point from the two previous

Mantissa Size Mantissa Binary Truncated Decimal Error Parts per million
52 1001000000010101100110110010000100000011001011111110 400.08439833
46 1001000000010101100110110010000100000011001011 400.084398329996
39 100100000001010110011011001000010000001 400.084398329724
32 10010000000101011001101100100001 400.084398329258
27 100100000001010110011011001 400.084398269653
24 100100000001010110011011 400.084396362305
23 10010000000101011001101 400.084381103516
21 100100000001010110011 400.084350585938
20 10010000000101011001 400.084228515625
17 10010000000101011 400.083984375
16 1001000000010101 400.08203125

0.00000
8.80887e-09
6.90786e-07
1.85469e-06
0.00015
0.00492
0.04306
0.11933
0.42445
1.03467
5.91645

14 10010000000101 400.078125
13 1001000000010 400.0625

15.68002
54.73428

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.02.13.947218doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.13.947218
http://creativecommons.org/licenses/by/4.0/

 13

data points, with only the error between the prediction and the actual value stored. As there is

often a quadratic relationship across m/z values (for example, since there is a quadratic

relationship between time-of-flight and m/z for a standard time-of-flight analyser), the aim of

‘mzLinear’ is to result in an approximately constant prediction error across the m/z range,

which will compress extremely well. In comparison, delta prediction on quadratic data would

lead to prediction errors that rise linearly with m/z. The technique and equation to calculate the

stored error ∆ℎ is depicted in Figure 3, with the plot showing a numerical series of m/z values

exhibiting a quadratic relationship and how the prediction error ∆ℎ remains constant for each

value.

Figure 3. mzLinear; linear predictor implemented in mzMLb, where m/zn = yn and the index

in = xn, both, ℎ! = 0 and ℎ" = 0 as the first value is stored in the new array and a linear equation

can always be derived to intersect the first two points. However, for the rest of the data points;

ℎ#$% where n = 0, 1, 2…, N-2, is calculated by linear predictor equation based on the previous

two points and N is the total number of m/z values.

In order to demonstrate mzMLb across a broad spectrum of proteomics and metabolomics

datasets used in different laboratories, we selected a wide variety MS techniques and

instruments from varying vendors. The datasets are depicted in the supplementary material

Table S1; files 1 through to 4 are from9, data files 5 to 8 are from14, 9 is from15, 10 is from16,

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.02.13.947218doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.13.947218
http://creativecommons.org/licenses/by/4.0/

 14

11 is from17 and finally 12 is from18. We tested mzMLb across different MS types including

SWATH-DIA, DDA and Selected reaction monitoring (SRM) data, and from the major

vendors including Thermo, Agilent, Sciex and Waters. Our implementation of mzMlb has been

integrated into the open source cross-platform ProteoWizard software libraries and tools, and

is available from https://github.com/biospi/pwiz. Hence, the proprietary raw vendors files can

be directly converted into mzMLb using the ‘msconvert’ tool.

Results

We first analyze the performance and generalisability of our truncated mzLinear coding

method for m/z accuracy. Figure 4 shows the effects of the change of mantissa on the dataset

‘AgilentQToF’; it can be seen that increasing truncation decreases the file size while having

minimal effect on accuracy. The effectiveness of the mzLinear prediction clearly improves zlib

compression rates significantly across the range of possible truncations, as it is able to exploit

the quadratic nature of the m/z to time of flight relationship.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.02.13.947218doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.13.947218
http://creativecommons.org/licenses/by/4.0/

 15

Figure 4. mzMLb; Mantissa truncation of AgilentQToF data file; with truncation error and file

size for both mzLinear enabled and disabled.

The procedure was performed on all datasets tested, and the mantissa values were chosen

such that the error induced by truncation would be less than that or comparable to Numpress’

default values of < 2×10-4 and < 2×10-9 relative errors for the intensities and m/z values

respectively, which according to9 are small enough so as to have no effect on the output of

results on the downstream of a given workflow. The result of the relative errors can be seen in

the supplementary material Table S2, where mzMLb produces higher compression ratios and

hence smaller files sizes.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.02.13.947218doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.13.947218
http://creativecommons.org/licenses/by/4.0/

 16

Figure 5. Mascot peptide PSM search results of original dataset against both Numpress and

mzMLb compression for AgilentQToF and QExactive datafiles. The top two plots show the

number of peptides found in Numpress and mzMLb against the original data with the x-axis

representing the deviation (DS) of the peptide score from the original. a) for the Agilent file,

here were can clearly see a number of peptide scores deviating from the original score for the

Numpress case. b) the results for the QExactive file, where the number of peptides deviating

in the Numpress case is much less when compared to the number of matching peptides. In both

cases mzMLb outperforms Numpress and has virtually no peptides deviating from the original.

The bottom two plots, show the relative E-value performance of both mzMLb and Numpress

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.02.13.947218doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.13.947218
http://creativecommons.org/licenses/by/4.0/

 17

against the original dataset, with c) depicting the results for Agilent and d) for the QExactive

datafile.

Since mzMLb’s truncation relative error is always less than that of Numpress, the validation

that Numpress does not noticeably affect downstream processing9 applies also to mzML.

Moreover, we expand this validation by compressing the AgilentQToF and QExactive data

files (shown in Table S1) and processing these files through a Mascot peptide search and

protein inference workflow, the results of which can be seen in Figure 5. For the case of the

AgilentQToF data we found that Numpress was unable to produce exactly the peptide and

protein lists as the original uncompressed datafile. However, mzMLb was able to produce the

same search and inference results for both the peptide/protein list as the original. Here we can

see that the relationship between the peptide E-values of both mzMLb and Numpress against

the original dataset, mzMLb gives an injective mapping (a straight line) vs the original peptide

E-value, whereas the Numpress results are unable to produce the same injective relationship.

The discontinuity of the Numpress results can be further illustrated by observing the peptides

in the shaded regions of Figure 5c; the peptides highlighted in the enclosed box a represent the

peptides that were present in both the original file and mzMLb but failed to be found in

Numpress, whereas the peptides enclosed in the b region are peptides that were found in

Numpress results but were not present in both the original and mzMLb results. The number of

peptides deviating from the original file can be seen in Figure 5a, here we see that Numpress

did not perform quite as well as mzMLb as there are a small number of peptide score values

deviating from the original dataset. In Figure 5b and 5d we can see the results of the same

procedure on the QExactive file, here we can see that mzMLb again produces an injective

relationship with the original dataset i.e. producing the same results as the unmodified dataset.

Numpress in Figure 5b preforms much better with an extremely low number of peptides

showing DS deviation. However, Numpress is still unable to produce exactly the same results

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.02.13.947218doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.13.947218
http://creativecommons.org/licenses/by/4.0/

 18

as the original in the Mascot pipeline. It does, however, perform better than the AgilentQToF

case and demonstrates that the lossy compression method employed in Numpress is more

susceptible to different vendor data files, whereas mzMLb truncation scheme is more robust to

datafile vendor variation and able to reproduce the same results as an unmodified datafile. We

thus take the most conservative truncation values from Table S2 (AgilentQToF truncation

values) and apply them as the mzMLb defaults.

The HDF5 binary dataset chunk size can have a significant impact on access speed and file

size. For the AgilentQToF file, Figure 6 compares mzML with zlib, mzML with Numpress +

zlib, and mz5 with zlib, to mzMLb across a range of chunk sizes. Figure 6a demonstrates write

performance on a Linux workstation; Dell T5810, Intel Xeon CPU E5-1650 v3, with 32GB

ram and 3Tb HDD running Ubuntu Linux v18.04. In order to produce these results, we ran

ProteoWizard msconvert 10 times converting the files from vendor format while recording the

write duration. However, modern operating systems including the Linux kernel employ a

sophisticated file and memory caching system; in order to mitigate this mechanism accelerating

the multiple writes and reads of the data files being tested, we cleared the Linux memory cache

after every invocation of msconvert. It can be seen for lower chunking values, mzMLb (with

both mzLinear on/off) outperforms the other formats, and only starts to slow for chunk size of

around 512 kb – 1024 kb. Figure 6b shows the relative compression of the files as the chunking

sizes increase (again for both mzLinear on/off). It can be seen that at 1024 kb the benefit of

increase chunking for compression of data quickly plateau while the writing speed deteriorates.

The file sizes of mzMLb with mzLinear perform 77% better than mzML + zlib, 25% smaller

than mzMLb + Numpress + zlib, and produce a 56% increase in compression when compared

to mz5 + zlib.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.02.13.947218doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.13.947218
http://creativecommons.org/licenses/by/4.0/

 19

Figure 6. Chunk size optimization with mzLinear enabled; a) mzMLb write benchmark times

with varying chunk size, b) file size with and without mzMLb enabled, c) random read

benchmarks for singular spectrum access for full chunking size range, d) random read

benchmarks for sequential block spectrum access for full chunking size range.

In order to evaluate the read performance of mzMLb we created a C++ program readBench,

which utilizes the PreoteoWizard API and its libraries to ensure the ability to read all files

formats consistently under the same software implementation. This command line tool is

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.02.13.947218doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.13.947218
http://creativecommons.org/licenses/by/4.0/

 20

available from https://github.com/biospi/pwiz. Here two scenarios were considered, the first

accessing a spectrum for the dataset 10,000 times at random. The second involved the random

reading of 10 sequential spectra selected 1,000 times at random, thus giving 10,000 total

spectrum accesses. These were also performed 10 times for each data point. The results are

depicted in Figure 6c and 6d; in both cases mzMLb outperforms the other file formats while

maintaining a smaller file size. Beyond 1024 kb chunk size, the random read time drastically

increases.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.02.13.947218doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.13.947218
http://creativecommons.org/licenses/by/4.0/

 21

Figure 7. mzMLb; random read benchmarks for both; singular and block sequential, for

uncompressed data with and without truncation and Numpress enabled; a) lossless single-

spectrum access, b) lossless block-sequential access, c) lossy single-spectrum access, d) lossy

block-sequential access.

Subsequently, we ran the random read benchmarks again but this time without zlib

compression in order to evaluate use cases where fast access times are paramount and file size

not important. In this test, we include mzMLb in both a lossless and lossy scenario. Here we

introduced the HDF5 BLOSC19 plugin to the validation. The aim of BLOSC is perform modest

but extremely fast decompression/compression so that the resulting read/write times are faster

than using no compression at all as less data needs to be physically written to disk. It

accomplishes this by: utilising a blocking technique that reduces activity on the system memory

bus, transmitting data to the CPU processor cache faster than the traditional, non-compressed,

direct memory fetch approach via a memcpy operating system call; leveraging SIMD

instructions (SSE2 and AVX2 for modern CPUs) and multi-threading capabilities present in

multi-core processors. BLOSC has a number of different optimised compression techniques

including; BloscLZ, LZ4, LZ4HC, Snappy, Zlib and Zstd. Throughout these tests we used

BLOSC with LZ4HC compression, as we found it to be the most effective in terms of read and

write speeds when dealing with MS datasets.

In Figure 7 we depict the results of our high-throughput results designed to seek out the

optimum solution for the fastest access to MS data, in two categories; lossless file formats

(Figure 7a and 7b), and lossy file formats (figure 7c and 7d). In both cases we consider both

random single spectra access (Figure 7a and 7c) and random block-sequential access (Figure

7b and 7d). We can see that in the case of lossless compression (Figure 7a and 7b) mzMLb

performs better than both mzML and mz5 in both single and block-sequential data access.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.02.13.947218doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.13.947218
http://creativecommons.org/licenses/by/4.0/

 22

Moreover, when we utilise mzMLb with BLOSC LZ4HC compression we can see that it

significantly outperforms both mzML and mz5 at virtually all chunking sizes and particularly

performs well at around 1024 kb chunks for both single and block-sequential scans. In the case

of lossy datasets (figure 7c and 7d), we can see that Numpress has a significant positive impact

on random read times for both single and block-sequential data access. Notably, Numpress

performs better when contained within mzMLb rather than mzML. Nevertheless, when we

utilize both mzMLb with mzLinear and BLOSC LZ4HC compression we observe that mzMLb

is significantly faster than Numpress in block-sequential data access, and is comparable to

Numpress within mzMLb for random single spectra access.

In Figure 8 and S1, we compare the file size and write performance of our new mzMLb file

format against vendor raw file, mzML, mz5, and Numpress within both mzML and mzMLb.

All results are the average of 10 runs. Here we also used the optimum mzMLb chunking size

of 1024kb derived from both Figure 5 and Figure 6, which allows mzMLb to possess both a

significant compression ratio of the file size and increased performance in both reading and

writing of the mass spectrometry file. Depicted in Figure 8, the colours of the markers represent

the different files formats, more specifically; the red represents mz5 files, the gray the mzML

files, the blue mzMlb files and finally the orange the mzMLb files with BLOSC. The shape of

the markers represents the different filters applied during the conversion process, e.g. a solid

triangle represents datasets without compression, a solid diamond datasets with zlib applied,

and a yellow asterisk datasets with mzLinear, truncation and zlib applied, etc. From these

results it can be seen that in all cases the resulting mzMLb files were significantly smaller than

mzML and a similar size to the vendor raw file. Moreover, from figure 8 and S1, mzMLb can

easily be tailored to different use cases (e.g. maximum compression for archiving; lower

compression but faster access times for processing, both the yellow asterisk and the solid circle

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.02.13.947218doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.13.947218
http://creativecommons.org/licenses/by/4.0/

 23

markers (figure 8), representing mzLinear+trunc+zlib and Numpress+zlib respectively) in

order to maximise the desired performance metric.

Figure 8. Summary data showing file sizes for all datasets using the 3 formats; mzML, mz5

and mzMLb with 6 different compression combinations spanning both lossless and lossy

�

�

�

�

�

�

�

�

�

�

�

�

k) Thermo Orbitrap XL, MS full, centroid, 40MB l) Agilent 6560, IMS, 49.9MB

I) Agilent QTOF, MS full, profile, 700.9MB j) Thermo Orbitrap Exactive,MS full, profile,, 503.2MB

g) Waters Synapt G2, DDA, profile, 4348.5MB h) Thermo Q�Exactive, DDA, profile, 1639.3MB

e) Agilent QTOF, DDA, profile, 4197.5MB f) ABI Sciex Triple TOF, SWATH DIA, profile, 2729.4MB

c) Thermo Orbitrap XL, DDA, peak picked, 201.2MB d) Thermo Orbitrap XL, DDA, profile, 496.7MB

a) Thermo TSQ Vantage, SRM, low, 13.2MB b) Thermo LCQ, DDA, low, 16.2MB

0

20

40

60

0

500

1000

1500

0

10000

20000

30000

40000

0

2000

4000

6000

0

200

400

600

800

0

200

400

600

0

5

10

0

50

100

150

200

0

10000

20000

30000

0

5000

10000

15000

20000

0

1000

2000

3000

4000

5000

0

50

100

150

Fi
le

 s
iz

e,
 M

B

Format mz5 mzML mzMLb mzMLb BLOSC
Compression

� mzlinear+trunc

mzlinear+trunc+zlib

No compression

Nump

Nump+zlib

zlib

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.02.13.947218doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.13.947218
http://creativecommons.org/licenses/by/4.0/

 24

configurations. Uncompressed data files are also depicted here along with mzMLb BLOSC,

demonstrating that fast access read times can be achieved without sacrificing file size. The

original vendor file sizes are represented by the vertical dashed line.

Conclusions

We demonstrate that by using a hybrid file format based on storing XML metadata together

with native binary data within a HDF5 file it is possible to improve data reading/writing speed

of raw MS data as well as preserve all related metadata in PSI-compliant mzML in an implicitly

future proof way. The mzMLb file format can be tailored for different applications by changing

the chunk size parameter, i.e. it is possible to adjust the format for fast access where file size

does not matter, e.g. visualisation and processing, or a smaller compressed file size with slower

reading/writing times for data archival. As a chunk can contain more than one spectrum of data,

compression can occur across spectra, which is not possible in mzML. Our results illustrate

that a chunk size of 1024kb is a good compromise for most applications

As mzMLb utilizes HDF5 we are able to leverage transparent mechanisms for random data

access, caching, partial reading or writing, and error checksums, and is easily extendable

through plugins to support additional filters and compression algorithms. HDF5 also allows the

user to add extra information to the data file while still maintaining PSI compatibility, simply

by adding extra HDF5 groups and datasets. This allows the user to store other data within the

file side-by-side with the mzMLb data, for example, a version of the data optimised for fast

visualisation20.

As we use standard features of HDF5, mzMLb is also bit-for-bit compatible with NetCDF4

(which has native Java libraries). This enables it to be easily implemented by third party

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.02.13.947218doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.13.947218
http://creativecommons.org/licenses/by/4.0/

 25

processing software, as both HDF5 and NetCDF4 is widely supported across common

programming languages including Java. As of v4.5.0, NetCDF also has support to allow

mzMLb files to be randomly accessed remotely over the internet (the HDF5 Group have also

recently delivered their own implementation of this functionality too), opening up the potential

for public repositories to provide new tools for users to efficiently query and visualise their raw

data archives.

Acknowledgements

This work was supported by BBSRC grants BB/M024954 & BB/R021430, MRC

grant MR/N028457 to Andrew W. Dowsey and Andrew R. Jones and BBSRC grants

BB/K01997X/1 & BB/R02216X/1 to Andrew R. Jones. Eric W. Deutsch also acknowledges

support from National Institutes of Health grants R01GM087221, R24GM127667,

U19AG023122, and from National Science Foundation grants DBI-1933311 and IOS-

1922871. We thank the Proteomics Standards Initiative community for their comments and

suggestions.

References

(1) Deutsch, E. MzML: A Single, Unifying Data Format for Mass Spectrometer Output.
Proteomics 2008, 8 (14), 2776–2777. https://doi.org/10.1002/pmic.200890049.

(2) Pedrioli, P. G. A.; Eng, J. K.; Hubley, R.; Vogelzang, M.; Deutsch, E. W.; Raught, B.;
Pratt, B.; Nilsson, E.; Angeletti, R. H.; Apweiler, R.; et al. A Common Open
Representation of Mass Spectrometry Data and Its Application to Proteomics Research.
Nat. Biotechnol. 2004, 22 (11), 1459–1466. https://doi.org/10.1038/nbt1031.

(3) Martens, L.; Chambers, M.; Sturm, M.; Kessner, D.; Levander, F.; Shofstahl, J.; Tang, W.
H.; Rompp, A.; Neumann, S.; Pizarro, A. D.; et al. MzML - a Community Standard for
Mass Spectrometry Data. Mol. Cell. Proteomics 2010, in press.
https://doi.org/10.1074/mcp.R110.000133.

(4) Mayer, G.; Montecchi-Palazzi, L.; Ovelleiro, D.; Jones, A. R.; Binz, P.-A.; Deutsch, E. W.;
Chambers, M.; Kallhardt, M.; Levander, F.; Shofstahl, J.; et al. The HUPO Proteomics
Standards Initiative- Mass Spectrometry Controlled Vocabulary. Database J. Biol.
Databases Curation 2013, 2013, bat009. https://doi.org/10.1093/database/bat009.

(5) Josefsson, S. The Base16, Base32, and Base64 Data Encodings; 2006.
(6) Deutsch, P.; Gailly, J.-L. ZLIB Compressed Data Format Specification Version 3.3. 1996.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.02.13.947218doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.13.947218
http://creativecommons.org/licenses/by/4.0/

 26

(7) Wilhelm, M.; Kirchner, M.; Steen, J. A. J.; Steen, H. Mz5: Space- and Time-Efficient
Storage of Mass Spectrometry Data Sets. Mol. Cell. Proteomics 2012, 11 (1).
https://doi.org/10.1074/mcp.O111.011379.

(8) Bouyssié, D.; Dubois, M.; Nasso, S.; Peredo, A. G. de; Burlet-Schiltz, O.; Aebersold, R.;
Monsarrat, B. MzDB: A File Format Using Multiple Indexing Strategies for the Efficient
Analysis of Large LC-MS/MS and SWATH-MS Data Sets. Mol. Cell. Proteomics 2015,
14 (3), 771–781. https://doi.org/10.1074/mcp.O114.039115.

(9) Teleman, J.; Dowsey, A. W.; Gonzalez-Galarza, F. F.; Perkins, S.; Pratt, B.; Rost, H.;
Malmstrom, L.; Malmstrom, J.; Jones, A. R.; Deutsch, E. W.; et al. Numerical
Compression Schemes for Proteomics Mass Spectrometry Data. Mol. Cell. Proteomics
2014, mcp.O114.037879. https://doi.org/10.1074/mcp.O114.037879.

(10) Folk, M.; Heber, G.; Koziol, Q.; Pourmal, E.; Robinson, D. An Overview of the HDF5
Technology Suite and Its Applications. In Proceedings of the EDBT/ICDT 2011
Workshop on Array Databases; ACM, 2011; pp 36–47.

(11) Schramm, T.; Hester, Z.; Klinkert, I.; Both, J.-P.; Heeren, R. M. A.; Brunelle, A.;
Laprévote, O.; Desbenoit, N.; Robbe, M.-F.; Stoeckli, M.; et al. ImzML — A Common
Data Format for the Flexible Exchange and Processing of Mass Spectrometry Imaging
Data. J. Proteomics 2012, 75 (16), 5106–5110.
https://doi.org/10.1016/j.jprot.2012.07.026.

(12) Rew, R.; Hartnett, E.; Caron, J. NetCDF-4: Software Implementing an Enhanced Data
Model for the Geosciences. In 22nd International Conference on Interactive Information
Processing Systems for Meteorology, Oceanograph, and Hydrology; 2006.

(13) Zuras, D.; Cowlishaw, M.; Aiken, A.; Applegate, M.; Bailey, D.; Bass, S.; Bhandarkar,
D.; Bhat, M.; Bindel, D.; Boldo, S. IEEE Standard for Floating-Point Arithmetic. IEEE
Std 754-2008 2008, 1–70.

(14) French, W. R.; Zimmerman, L. J.; Schilling, B.; Gibson, B. W.; Miller, C. A.; Townsend,
R. R.; Sherrod, S. D.; Goodwin, C. R.; McLean, J. A.; Tabb, D. L. Wavelet-Based Peak
Detection and a New Charge Inference Procedure for MS/MS Implemented in
ProteoWizard’s MsConvert. J. Proteome Res. 2015, 14 (2), 1299–1307.
https://doi.org/10.1021/pr500886y.

(15) Decuypere, S.; Maltha, J.; Deborggraeve, S.; Rattray, N. J. W.; Issa, G.; Bérenger, K.;
Lompo, P.; Tahita, M. C.; Ruspasinghe, T.; McConville, M.; et al. Towards Improving
Point-of-Care Diagnosis of Non-Malaria Febrile Illness: A Metabolomics Approach.
PLoS Negl. Trop. Dis. 2016, 10 (3). https://doi.org/10.1371/journal.pntd.0004480.

(16) Creek, D. J.; Chokkathukalam, A.; Jankevics, A.; Burgess, K. E. V.; Breitling, R.; Barrett,
M. P. Stable Isotope-Assisted Metabolomics for Network-Wide Metabolic Pathway
Elucidation. Anal. Chem. 2012, 84 (20), 8442–8447. https://doi.org/10.1021/ac3018795.

(17) Jankevics, A.; Merlo, M. E.; de Vries, M.; Vonk, R. J.; Takano, E.; Breitling, R.
Separating the Wheat from the Chaff: A Prioritisation Pipeline for the Analysis of
Metabolomics Datasets. Metabolomics 2012, 8 (Suppl 1), 29–36.
https://doi.org/10.1007/s11306-011-0341-0.

(18) Zhang, X.; Romm, M.; Zheng, X.; Zink, E. M.; Kim, Y.-M.; Burnum-Johnson, K. E.;
Orton, D. J.; Apffel, A.; Ibrahim, Y. M.; Monroe, M. E.; et al. SPE-IMS-MS: An
Automated Platform for Sub-Sixty Second Surveillance of Endogenous Metabolites and
Xenobiotics in Biofluids. Clin. Mass Spectrom. 2016, 2, 1–10.
https://doi.org/10.1016/j.clinms.2016.11.002.

(19) Blosc http://blosc.org/ (accessed Jun 24, 2019).
(20) Zhang, Y.; Bhamber, R.; Riba-Garcia, I.; Liao, H.; Unwin, R. D.; Dowsey, A. W.

Streaming Visualisation of Quantitative Mass Spectrometry Data Based on a Novel Raw

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.02.13.947218doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.13.947218
http://creativecommons.org/licenses/by/4.0/

 27

Signal Decomposition Method. PROTEOMICS 2015, 15 (8), 1419–1427.
https://doi.org/10.1002/pmic.201400428.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.02.13.947218doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.13.947218
http://creativecommons.org/licenses/by/4.0/

 28

Supplementary material.

Table S1. The raw MS data files used in the validation, together with MS instrument and

method information.

Table S2. mzMLb optimized values of the mantissa for both m/z and intensities for the data

files listed in Table S1. The associated errors and files sizes for mzML with Numpress and

mzMLb are also shown. Both formats used zlib compression with a compression strength of 4.

For all results we show the maximum error across the whole dataset.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.02.13.947218doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.13.947218
http://creativecommons.org/licenses/by/4.0/

 29

Figure S1. Summary data showing write times and file sizes for all datasets using the 3 formats;

mzML, mz5 and mzMLb with 5 different compression combinations spanning both lossless

and lossy configurations. The original vendor file sizes are represented by the vertical dashed

line.

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

k) Thermo Orbitrap XL, MS full, centroid, 40MB l) Agilent 6560, IMS, 49.9MB

I) Agilent QTOF, MS full, profile, 700.9MB j) Thermo Orbitrap Exactive,MS full, profile,, 503.2MB

g) Waters Synapt G2, DDA, profile, 4348.5MB h) Thermo Q−Exactive, DDA, profile, 1639.3MB

e) Agilent QTOF, DDA, profile, 4197.5MB f) ABI Sciex Triple TOF, SWATH DIA, profile, 2729.4MB

c) Thermo Orbitrap XL, DDA, peak picked, 201.2MB d) Thermo Orbitrap XL, DDA, profile, 496.7MB

a) Thermo TSQ Vantage, SRM, low, 13.2MB b) Thermo LCQ, DDA, low, 16.2MB

32 64 128 64 128 256 512

512 1024 2048 4096 128 256 512

2048 4096 8192 16384 1024 2048 4096

4096 8192 16384 32768 4096 8192 16384 32768

64 128 256 512 1024 2048

0.5 1.0 2.0 4.0 8.0 8 16 32 64
3.5
4.0
4.5
5.0
5.5
6.0

110

120

130

2100

2200

2300

2400

2500

380

400

420

440

460

39

42

45

48

51

35.0

37.5

40.0

42.5

45.0

47.5

0.20

0.25

0.30

0.35

0.40

15

17

19

1400
1500
1600
1700
1800
1900

2500

3000

3500

4000

4500

150

200

250

300

350

400

7

8

9

10

File size, MB

W
rit

e
tim

e,
 s

Format ● ● ●mz5 mzML mzMLb Compression ●mzlinear+trunc+zlib No compression Nump Nump+zlib zlib

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.02.13.947218doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.13.947218
http://creativecommons.org/licenses/by/4.0/

 30

The mzMLb format

An mzMLb dataset is a HDF5 file which must include in its root a HDF5 dataset mzML with

fixed length string attribute version. The currently supported version string is: “mzMLb 1.0”.

The mzML XML document is stored in the mzML dataset, which is a 1D character array, with

two modifications:

(1) HDF5 binary indexes replace the <indexedmzML> wrapper schema. Here:

• HDF5 datasets mzML_spectrumIndex and mzML_chromatogramIndex replace the

respective <indexedmzML> <index> blocks. Each is a 1D array of 64bit integers

replicating the set of <offset> file pointer offsets - except note that there is an extra

offset at the end of each array representing one past the end position of the last

spectrum/chromatogram.

• HDF5 datasets mzML_spectrumIndex_idRef and mzML_chromatogramIndex_idRef,

1D character arrays, then replicate the idRef attributes of <offset> as null-terminated

strings concatenated together.

• Similarly and optionally, spotID attributes can be stored in HDF5 1D character array

datasets mzML_spectrumIndex_spotID and mzML_chromatogramIndex_spotID,

while scanTime attributes can be stored in HDF5 1D floating point array

dataset mzML_spectrumIndex_scanTime.

(2) The mzML base64 encoded binary data is removed from the <mzML> and moved into one

or more native binary HDF5 datasets. Floating point binary data (i.e. all non-Numpress

compressed <BinaryDataArray>) is stored as one or more HDF5 1D floating point arrays,

while Numpress data can be stored as a non-base64 encoded bytestream with HDF5 data

type OPAQUE.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.02.13.947218doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.13.947218
http://creativecommons.org/licenses/by/4.0/

 31

As in imzML, the mzML is modified slightly to specify this linkage to external data; the

resulting XML is still valid mzML. Here, any <binary> blocks within the <binaryDataArray>

blocks are removed, and the encodedLength attribute is set to "0". To link to the native HDF5

binary data, within the <binaryDataArray> three <cvParam> tags need to be given, specifying

the external dataset name, offset to the start of the relevant data within the dataset, and the

length of the relevant data. These three tags enable flexibility over the nature and number of

HDF5 datasets used to store the binary data (e.g. separate datasets can be used to store different

datatypes; multiple spectra can be stored in the same dataset for improved chunking and

compression).

ProteoWizard mzMLb msconvert arguments

In order to convert input data into the mzMLb format using msconvert; the following new

arguments have been introduced that allow you to alter the default parameters of converting

files to mzMLb when using “--mzMLb” switch.

--mzTruncation=[0-] --intenTruncation=[0-]

Perform lossy compression by removing the last n bits of mantissa from floating point data

before storage. The default is 0 (no removal). Set to -1 to truncate to integers.

--mzDelta --intenDelta --mzLinear --intenLinear

Store mz/rt or intensity values after delta or linear prediction. Predictive encoding of mz/rt

values may lead to moderate improvements in gzip compression, or further improvements after

floating point precision loss.

--mzMLbChunkSize=[4096-]

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.02.13.947218doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.13.947218
http://creativecommons.org/licenses/by/4.0/

 32

Defines the chunk size to use for the mzML and all binary HDF5 datasets, in bytes. A smaller

amount improves random access speed at the detriment of compression efficiency.

--mzMLbCompressionLevel=[0-9]

Define to use either no compression (0) or GZIP compression strength 1 to 9. Compression is

applied to the mzML and all binary HDF5 datasets. Specifying --zlib or -z instead will use the

default compression strength of 4. If no compression is specified, the default chunk size is 1024

KB. If compression is specified, the defaults are chunk size 1024 KB, mzLinear on,

mzTruncation 19 and intenTruncation 7 (as described in the main manuscript).

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.02.13.947218doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.13.947218
http://creativecommons.org/licenses/by/4.0/

