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ABSTRACT

Many of the gene regulatory processes of Plasmod-
ium falciparum, the deadliest malaria parasite, re-
main poorly understood. To develop a comprehen-
sive guide for exploring this organism’s gene regula-
tory network, we generated a systems-level model of
P. falciparum gene regulation using a well-validated,
machine-learning approach for predicting interac-
tions between transcription regulators and their tar-
gets. The resulting network accurately predicts ex-
pression levels of transcriptionally coherent gene
regulatory programs in independent transcriptomic
data sets from parasites collected by different re-
search groups in diverse laboratory and field set-
tings. Thus, our results indicate that our gene reg-
ulatory model has predictive power and utility as a
hypothesis-generating tool for illuminating clinically
relevant gene regulatory mechanisms within P. falci-
parum. Using the set of regulatory programs we iden-
tified, we also investigated correlates of artemisinin
resistance based on gene expression coherence. We
report that resistance is associated with incoher-
ent expression across many regulatory programs,
including those controlling genes associated with
erythrocyte-host engagement. These results suggest
that parasite populations with reduced artemisinin
sensitivity are more transcriptionally heterogenous.
This pattern is consistent with a model where the par-
asite utilizes bet-hedging strategies to diversify the

population, rendering a subpopulation more able to
navigate drug treatment.

INTRODUCTION

Despite decades-long eradication campaigns, malaria re-
mains a global burden with an estimated 405 000 deaths
worldwide in 2018 (1), largely as a result of the deadliest
malaria parasite, Plasmodium falciparum. While malaria-
associated deaths have declined over the past decade, likely
due to both vector control measures and the roll-out of
artemisinin-based combination therapies, the annual death
rate has plateaued in recent years. The origin of all malaria-
associated mortality and morbidity is the destructive, cyclic
asexual development of blood stage parasites that leads to
erythrocyte death. Thus, elucidating the parasite’s molecu-
lar regulatory mechanisms during its blood stage provides
opportunities for identifying drug targets that would reduce
the global burden of the disease. While extensive gene reg-
ulation at the level of translational repression occurs dur-
ing the parasite’s mosquito-to-man and man-to-mosquito
transitions (2–4), it appears that transcriptional, not trans-
lational regulation, plays a dominant role in protein regu-
lation during the asexual, blood stage cycle (5). Transcrip-
tional profiling has illustrated oscillatory patterns in co-
horts of genes (6), suggesting that tightly regulated tran-
scriptional networks initiate and/or respond to parasite life
cycle progression within the asexual blood stage. However,
outstanding questions that surround transcriptional regula-
tion in P. falciparum asexual stages remain. To elucidate the
gene regulatory interactions that contribute to key cellular
processes in blood stage P. falciparum, we aimed to build a
predictive genome-scale transcriptional regulatory network

*To whom correspondence should be addressed. Tel: +1 206 884 3125; Fax: +1 206 884 3104; Email: John.Aitchison@seattlechildrens.org
Correspondence may also be addressed to Alexis Kaushansky. Email: Alexis.Kaushansky@seattlechildrens.org
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.
Present address: Samuel A. Danziger, Bristol Myers Squibb, Seattle, WA, USA.

C© The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkaa1245/6101600 by guest on 05 M

arch 2021

http://orcid.org/0000-0002-2390-6572
http://orcid.org/0000-0002-1825-8718
http://orcid.org/0000-0003-2934-5267
http://orcid.org/0000-0002-5669-414X
http://orcid.org/0000-0001-9157-5974
http://orcid.org/0000-0001-5721-258X
http://orcid.org/0000-0002-9153-6497


2 Nucleic Acids Research, 2021

(TRN) for the parasite that could be applied to laboratory
and field-isolated P. falciparum strains alike.

TRNs link transcription factors (TFs) with their targets
and are generally constructed using a set of transcriptomes
and a pre-existing set of TF-target pairs (7). A TRN, there-
fore, can provide biological insight by predicting––on a
global scale––which proteins regulate which genes, which
proteins are critical in functional networks, and how the or-
ganism’s overall regulatory system is organized. The Api-
complexan Apetala2 (ApiAP2) family of DNA binding pro-
teins is the dominant set of characterized TFs for Plas-
modium (8), and has been demonstrated to bind specific
DNA sequences (9) and regulate multiple steps in parasite
life cycle progression (8,10) including erythrocyte invasion
(11), blood stage replication (8), sexual differentiation (12),
oocyst development (13), sporogony (14) and liver stage de-
velopment (15). Other TFs have been molecularly analyzed
(16) and putative TFs have been identified using computa-
tional approaches (17,18). Building a P. falciparum TRN al-
lowed us to predict and quantify, on a genome scale, which
of these transcriptional regulators influence which target
genes. Thus, our TRN represents a large set of hypotheses
about which gene products regulate the expression of other
genes and to what degree. Together, these hypotheses pro-
vide a systems-level roadmap that can help guide empirical
studies aimed at unraveling the mechanistic relationships
between molecular role players in P. falciparum.

To construct the network, we employed a set of sys-
tems biology tools and an analysis methodology previ-
ously developed for constructing Environmental and Gene
Regulatory Influence Networks (EGRINs) in microbes
such as Halobacterium salinarum (19,20), Escherichia coli
(19), Mycobacterium tuberculosis (21) and Saccharomyces
cerevisiae (22) (Figure 1). The genome-level transcriptional
control networks predicted by these EGRINs have been
validated previously through, for example, empirical con-
firmation of predicted TF binding sites in E. coli (19) and
gene expression changes due to TF overexpression in M. tu-
berculosis (21). The biological insights derived from these
EGRINs include the identification of novel regulators of
peroxisome-related genes in S. cerevisiae (22) and regula-
tors of bedaquiline tolerance in M. tuberculosis (23). We
built the P. falciparum EGRIN (PfEGRIN) by analyzing
transcriptomic data sets to discover co-regulated groups of
genes, and then performed regularized regression to deter-
mine which proteins regulate those genes, and to what ex-
tent. The result is a set of weighted interactions between
transcription regulators (TRs) and their targets comprising
a genome-wide regulatory network that can be used to pre-
dict target gene expression levels based on expression lev-
els of their regulators (Figure 1). Here, we detail the de-
velopment of the PfEGRIN, report its capabilities for pre-
dicting global gene expression across multiple validation
data sets, characterize its structural organization, and pro-
file TRs with the highest number of regulatory targets in the
model. Moreover, we use the EGRIN model to gain insight
into mechanisms that enable artemisinin resistance.

Beyond outputting weighted TR-target interactions (i.e.
hypotheses regarding which TRs influence the expression
of which transcripts), EGRIN models facilitate the iden-
tification of concordant sets of transcripts associated with

a given phenotype. A critical phenotype of global impor-
tance is the loss of artemisinin sensitivity in Plasmodium
parasites. Artemisinin and its derivatives are widely used in
combination therapies against malaria to quickly reduce the
patient’s parasite biomass. Several countries have seen the
emergence of parasite strains that require extended clear-
ance times following artemisinin-based therapy, threaten-
ing one of the cornerstones of malaria treatment across
the globe (24). Importantly, although genetic correlates of
artemisinin resistance have been identified (25), including
mutations in the Kelch13 protein (26,27), not all para-
sites with a reduction in sensitivity of artemisinin harbor
Kelch13 mutations, and the molecular pathways underpin-
ning artemisinin resistance include global processes such
as production of phosphatidylinositol 3-phosphate contain-
ing vesicles (28), oxidative stress (29), the unfolded protein
response (30) and hemoglobin endocytosis (31). A com-
prehensive view of how a parasite is able to circumvent
artemisinin has yet to be fully defined (32). To elucidate
properties associated with artemisinin resistance, we iden-
tified concordant gene sets generated for the EGRIN that
were associated with transcriptomic samples collected prior
to artemisinin-based therapy that showed an artemisinin-
sensitive (AS) or artemisinin-resistant (AR) phenotype af-
ter therapy. We hypothesized that molecular mechanisms
underlying artemisinin resistance would manifest as gene
sets showing elevated coherence among samples with longer
parasite clearance times. Surprisingly, our analysis revealed
that artemisinin resistance is linked to dramatically less
coherence across a range of gene regulatory mechanisms,
including––but not limited to––those associated with pro-
cesses known to be part of the parasite’s bet-hedging strat-
egy for evading the immune system during blood stage
infection and persisting in the presence of environmental
stress (33,34).

MATERIALS AND METHODS

Data sources

Transcriptomic data used to train our PfEGRIN model
were downloaded from Gene Expression Omnibus (GEO)
accession GSE59097 using the R package GEOquery (35).
This data set is associated with a study by Mok, et al. (30)
that examined transcriptomic correlates of artemisinin re-
sistance. It consists of microarray-based gene expression
measurements on 1043 P. falciparum field isolates obtained
in Bangladesh, Democratic Republic of Congo, Cambodia,
Laos, Myanmar, Thailand and Vietnam. Each transcrip-
tomic profile in this data set represents an individual pa-
tient’s infection, was obtained prior to artemisinin-based
therapy, and is associated with an infection-specific parasite
clearance half-life value. AR and AS parasites were found
in all geographic regions where sampling occurred.

The Mok et al. study also includes a separate 110-sample
transcriptomic data set (GEO accession GSE59098) con-
sisting of microarray measurements on blood stage para-
sites that were collected from 19 of the Pailin, Western Cam-
bodia patients in accession GSE59097, cultured ex vivo, and
then sampled at various timepoints over 40 hours. This data
set was one of three used to assess the model’s ability to pre-
dict gene expression levels in transcriptomic data not used
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Figure 1. Overall workflow used to generate the global P. falciparum EGRIN. We used cMonkey2 to generate biclusters containing genes showing coherence
across sample subsets, then used the Inferelator tool to combine that information with a list of transcription regulators (TRs) to generate a genome-scale
regulatory network. A higher-resolution image of the network visualization on the right is provided in Supplementary Figure S4. Network visualization
generated using the ‘circlize’ R package (69).

to train the model. The other two data sets used in this as-
sessment are available through GEO accessions GSE83667
and GSE116341. GSE83667 consists of 58 microarray-
based, P. falciparum transcriptomic profiles obtained from
blood samples collected in Malawi (36). GSE116341 pri-
marily consists of single-cell RNA-seq data from an in vitro
P. falciparum blood stage strain, but also includes 28 bulk
RNA-seq measurements on parasite populations, which we
used for model validation (37).

FASTA and GFF files containing genome sequence and
annotation information for the P. falciparum 3D7 strain
were downloaded from plasmodb.org (38) (release 42) and
used in cMonkey2 runs.

A FASTA file containing P. falciparum 3D7 protein se-
quence information across the organism’s proteome was
downloaded from UniProt (39) for use in identifying pro-
teins with potential gene regulatory functions.

Model construction

To generate our global gene regulatory network, we adapted
a workflow previously used to generate EGRINs for
Halobacterium salinarum and E. coli (19). First, we used
the cMonkey2 biclustering tool (40,41) (version 1.2.11) to
identify co-regulated genes among the transcriptomic pro-
files from training data (GEO accession GSE59097). The
output of a cMonkey2 run is a set of biclusters, each of
which contains a set of genes and a set of transcriptomic
samples in which those genes show elevated expression co-
herence. Thus, each bicluster represents genes that are likely
co-expressed as part of a common regulatory program. We
then used the Inferelator, a regression analysis algorithm
(20,42) (https://github.com/baliga-lab/cMonkeyNwInf) to
generate a network of weighted regulator-target interac-
tions from the collection of biclusters in each cMonkey2
run in combination with a list of P. falciparum transcrip-
tional regulators. The weights of these interactions, which
quantify the influence that regulators have on their target
genes, were then averaged across these EGRINs to create an
ensemble EGRIN. The final list of 90 300 regulator-target

pairs comprising the model was determined by ranking all
pairs in the ensemble EGRIN by their absolute weights,
then testing model predictions on training data using var-
ious percentages of the top-ranked pairs.

In the context of EGRIN modeling, when discussing the
transcriptional influence of gene products on other genes’
expression, we make a distinction between TFs and TRs.
We refer to proteins that have been demonstrated to reg-
ulate target gene expression by binding to cis-regulatory
DNA elements as TFs. We consider TRs a broader set of
proteins that regulate gene expression, but not necessarily
through sequence-specific DNA-binding. We make this dis-
tinction because many of the proteins presumed to have
gene regulatory activity in our model have not been molec-
ularly analyzed, and their precise modes of action as regu-
lators remain unknown. It is a distinction we introduce to
make it clear that the complement of regulatory proteins
in our model is not limited to those that exert regulatory
influence through sequence-specific, cis-regulatory DNA-
binding, but also includes proteins that may influence ex-
pression via more indirect mechanisms (hence the use of the
word ‘Influence’ in the term EGRIN).

Identifying biclusters from transcriptomic data

The cMonkey2 biclustering tool identifies potential gene
regulatory programs based on transcriptomic data and a
priori biological knowledge (40,41). The tool groups genes
based on their coherence across transcriptomic profiles;
genes with expression levels that shift more in parallel across
transcriptomic profiles are more likely to be grouped to-
gether by the algorithm as this suggests the genes may be
under the influence of a common set of transcriptional regu-
lators. Concomitantly, cMonkey2 identifies subsets of tran-
scriptomic profiles (samples) in which gene sets show high
coherence. This allows cMonkey2 to delineate particular ex-
perimental samples in which gene coherence is high. For
example, expression in a certain regulatory pathway may
only be coherent among transcriptomic profiles from sam-
ples that were treated with a certain drug.
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For details on the cMonkey2 algorithm, we refer to the
reader to the original paper describing the algorithm (40)
and the Supplementary Information in Brooks, et al. (19)
which describes updates to the algorithm present in the
version of cMonkey2 used to construct the PfEGRIN. To
summarize, the algorithm uses a stochastic procedure mod-
eled after k-means clustering to optimize the assignment of
genes and transcriptomic samples to a pre-defined number
of biclusters. First, genes and transcriptomic samples are
divided into the set of biclusters using k-means clustering.
Then, across a series of iterations, the algorithm updates
the assignment of genes and samples among the biclusters
based on a scoring metric that quantifies how well a gene or
sample fits within a particular bicluster (analogous to deter-
mining closeness to the centroid of a k-means cluster). This
metric incorporates measures of concordance in gene ex-
pression levels, agreement among predicted upstream gene
regulators, and other data providing evidence for gene in-
teractions such as protein-protein interaction networks. The
result is a set of biclusters containing genes that show high
likelihood of being co-regulated within a common gene reg-
ulatory program among samples in the bicluster.

To prepare the transcriptomic data from the GSE59097
training data set for cMonkey2 biclustering analysis, we
normalized the data on a gene-by-gene basis using a z-score
transform. The 5000 genes with the highest standard devi-
ation across samples in the raw GSE59097 expression data
were used in our runs. This cutoff was chosen to be consis-
tent with established cMonkey2 protocols, to ensure com-
parability against previous EGRIN development efforts,
and to avoid fitting our model to potential noise generated
by transcripts with low variance while ensuring that a com-
prehensive set of P. falciparum genes remained in the model.
Runs were performed using the Bicluster Sampled Coher-
ence Metric (BSCM), which helps optimize the difference
in coherence between samples within a bicluster and those
not in the bicluster (43). cMonkey2 runs were performed
with de novo binding motif detection enabled. This means
that when the tool calculates the likelihood that a gene be-
longs within a particular bicluster, it scans the P. falciparum
genome to determine if the gene and those in the bicluster
share common upstream binding motifs and are therefore
more likely to be co-regulated.

Inferring a gene regulatory influence network from biclusters

The Inferelator tool uses elastic net regularization, which
is a linear regression-based statistical modeling method, to
determine which P. falciparum TRs regulate which target
genes and to quantify the direction and strength of that
regulatory influence. Given the biclusters from a cMonkey2
run and a list of TRs assumed to have regulatory influence
on the organism’s genes, the Inferelator generates a list of
weighted TR-bicluster pairs that indicates which TRs reg-
ulate which groups of biclustered genes and to what de-
gree. Generally speaking, this determines which TRs reg-
ulate which gene regulatory programs identified by cMon-
key2. The weights of the TR-bicluster pairs quantify the in-
fluence of a TR on a gene regulatory program and are de-
termined by the elastic net algorithm underlying the Infer-
elator. They represent the elastic net algorithm’s best esti-

mates for predicting the mean expression levels of genes in
a bicluster from the expression levels of TRs. Our systems-
level EGRIN, which is composed of relationships between
TRs and target genes, is constructed from the TR-bicluster
pairs: For each such pair, a regulatory relationship between
the TR and each individual gene member of the bicluster
is asserted in the EGRIN, and the TR-bicluster weight is
used as the weight of that relationship. The resulting set of
relationships can be analyzed as a node-and-edge network
consisting of genes (nodes) and the directed, weighted regu-
latory relationships between them (edges). Using these rela-
tionships, expression levels for individual genes can be com-
puted using only the expression values of TRs predicted to
influence their expression. This can be done for any individ-
ual transcriptomic profile for which TR expression values
are available. Gene expression predictions are obtained by
first collecting all TR-target pairs that include the gene and
have non-zero weights, and then multiplying each weight by
the expression level of the TR in the pair, then summing
these products across the TR-target pairs.

The Inferelator identifies regulatory relationships using
correlation, and one of the challenges in developing a net-
work using a correlation-based approach is determining
the directionality of regulatory relationships. For exam-
ple, if two TRs have well-correlated expression levels, this
may indicate that the first regulates the second, the second
regulates the first, or the regulation is reciprocal. If given
temporally-resolved expression data as input, the Inferela-
tor can address this issue using dynamic modeling of TR-
target interactions. The data used here for model training
were from a single time point, and dynamic modeling was
therefore not applicable. However, an additional way to ad-
dress the directionality issue, which was used in our ap-
proach, is by applying de novo upstream motif detection
when using cMonkey2 to identify biclusters. Doing so adds
an additional layer of biological evidence indicating that co-
regulated genes in a bicluster are targets of some TR and not
necessarily the reverse. Thus, while the Inferelator may find
a regulatory relationship suggesting that TR1 targets TR2, it
may not necessarily predict the reciprocal because upstream
motif detection may assign TR1 to a bicluster whose over-
all expression profile does not correlate well with TR2. We
therefore assume that each individual TR-target regulatory
relationship identified by the Inferelator is unidirectional.
Reciprocal relationships may nonetheless appear in the re-
sulting network if the Inferelator separately identifies both
elements of a reciprocal relationship between TRs.

Determining model convergence

The cMonkey2 algorithm includes elements of randomness
as it attempts to optimally group genes and samples to-
gether. For example, at the beginning of each cMonkey2
run, genes and samples are randomly divided into a speci-
fied number of biclusters. Additionally, to avoid falling into
local minima, a small amount of random noise is applied to
the probability matrix used to assign genes to biclusters at
each iteration of the algorithm. At the end of each iteration,
a random set of elements (genes or samples) is selected for
bicluster re-assignment as part of the algorithm’s optimiza-
tion routine (19). Therefore, separate cMonkey2 runs using
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the same input data do not generate identical results, and an
ensemble of cMonkey2 runs is needed to account for run-
to-run variation and produce statistically robust results.

To determine the number of cMonkey2 runs needed to
ensure robustness in our final gene regulatory model, we
performed multiple cMonkey2 runs, then used separate In-
ferelator runs to compute TR-target weights for each indi-
vidual cMonkey2 run. We determined what percentage of
TR-target pairs produced by the Inferelator had average
weights that shifted less than 5% when comparing average
weights over the total number of cMonkey2 runs to aver-
age weights over three less than the total number of runs. If
more than 95% of the averaged TR-target weights shifted
less than 5%, then we concluded that additional cMon-
key2 runs would not substantially change the gene regula-
tory network model derived from the averaged weights. We
reached our target level of convergence for TR-target in-
teraction weights after 77 cMonkey2/Inferelator runs: less
than 5% of the average weights on TR-target interactions
changed >5% between 74 and 77 runs (Supplementary Fig-
ures S1 and S2).

Compiling P. falciparum transcription regulators

The list of TRs used as input to the Inferelator consists of
known, empirically-analyzed TFs, predicted TRs reported
in the literature, and predicted TRs we identified through
a protein domain analysis performed on the P. falciparum
proteome. The TR list was populated in part using the col-
lection of regulatory genes previously compiled by Bischoff
and Vaquero (17) who used Pfam Hidden Markov Model
profiles (44) to identify proteins with potential transcrip-
tional activity. Among the 202 genes they identified, their
list includes the 27 genes encoding ApiAP2 proteins (45).
We also included empirically-analyzed and putative TFs
mentioned in a recent review (16). To further expand the
list, sequences for proteins in the P. falciparum proteome
were downloaded from UniProt (39) and then input to the
InterProScan tool (46) to identify protein domains within
each proteome entry. InterProScan utilizes domain infor-
mation from several databases, including Pfam (44) and
SMART (47), and provides textual descriptions of any do-
mains that are found within the scanned proteins. From the
InterProScan output, we selected any proteins annotated
against protein domains containing the phrase ‘DNA bind-
ing’ or ‘transcription factor’. We accounted for subtle vari-
ations in these specific phrases. For example, domain an-
notations containing the phrase ‘dna-binding’, ‘DNA bind-
ing’ or ‘dna binding’ were all flagged by our approach. We
added the genes encoding these proteins to the existing list
of TRs, accounted for overlap, then selected those genes
that were present in the list of 5000 used for our cMonkey2
runs. This final list of genes was used as input to each of the
Inferelator runs we performed to generate our ensemble of
EGRIN models.

Model evaluation

Evaluations using the three transcriptomic validation data
sets compared measured and model-predicted mean gene
expression across the biclusters generated from our 77
cMonkey2 runs. For all three validation data sets, the model

was used to predict expression values for each gene in a
bicluster using the measured expression levels of the TRs
regulating those genes and the weight of those interactions
in our model. For each bicluster tested, the mean model-
predicted expression of its genes was computed and com-
pared to the mean measured expression from the validation
data set. To ensure the comparisons were valid, we normal-
ized the validation data using the same method applied to
the training data used to create the model (gene-by-gene
z-score transform). To quantify model accuracy, we calcu-
lated root-mean-square errors (RMSEs) between the pre-
dicted and measured values across samples in each bicluster.
In some cases, due to missing values in samples within the
validation sets, we were not able to compare the full com-
plement of predicted and measured values for each sam-
ple. Therefore, for a bicluster to be included in this analysis,
we required that more than half of the samples in the vali-
dation data set contain the full complement of predicted-
to-measured gene expression comparisons. An archive of
R scripts and data objects that allow a user to reproduce
model-based, quantitative predictions reported here is in-
cluded as Supplementary Data.

For evaluations that assessed overlap between model-
predicted targets of ApiAP2 TFs and targets predicted
based on empirically-derived binding sequence motifs, we
used the ‘TF Binding Site Evidence’ page on plasmodb.org
to retrieve lists of genes that are targeted by ApiAP2 TFs
based on the presence of TF-specific upstream binding mo-
tifs. We used the page’s default parameters to set the size of
the upstream region to scan (1000 bp), the minimum num-
ber of motifs per gene (1 motif) and the minimum confi-
dence level for a match to the motif (P-value ≤ 1e–4). We
then compared the retrieved lists to the targets of ApiAP2
TFs predicted by our model. For each ApiAP2 TF evalu-
ated, a hypergeometric enrichment test was used to quan-
tify the overlap between motif-based and model-based tar-
get predictions.

Identifying correlates of artemisinin resistance

Hypergeometric enrichment tests were used to identify bi-
clusters that were either significantly enriched for sam-
ples with AR infections or significantly enriched for sam-
ples with AS infections. In accordance with previous cri-
teria used to analyze the training data used to build our
model, we classified samples with parasite clearance half-
lives greater than or equal to 5 h as AR (30). Samples with
lower clearance times were classified as AS. After identi-
fying biclusters that showed over-representation of either
the AR or AS group, we functionally profiled the genes in
the biclusters by determining their enrichment for members
of gene sets collected from the Gene Ontology (48,49), the
Malaria Parasite Metabolic Pathways (MPMP) resource
(50,51), and data sets associated with stage-specific gene ex-
pression at different points in the parasite life cycle (52–59).

RESULTS

Gene regulatory network model construction

To generate a robust P. falciparum EGRIN, we adapted a
workflow previously used to create EGRINs for H. sali-
narum and E. coli (19). As illustrated in Figure 1, we first
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used the biclustering tool cMonkey2 (40,41) to identify
genes and transcriptomic samples that group together based
on gene expression coherence. These biclusters were com-
puted based on a large P. falciparum transcriptomic data
set (GEO accession GSE59097) and the genomic sequence
of the organism. We then used the Inferelator tool (20,42)
to generate a network of weighted TR-target interactions
based on coherence between TRs and biclustered genes. The
list of TRs used for this step was compiled from known,
empirically-analyzed TFs (16), putative regulators com-
piled via computational methods in a previous study (17),
and an analysis we performed using InterProScan (46) that
identified additional proteins with potential regulatory ac-
tivity. For semantic clarity, we reserve the TF term for pro-
teins that have been shown to bind to cis-regulatory DNA
elements; TRs are a broader class of proteins including
TFs whose regulatory activity is not necessarily limited to
sequence-specific binding. In the following sections, we de-
tail results from each step in our workflow which ultimately
culminated in our system-level gene regulatory network.

Generating biclusters

The primary product of a cMonkey2 run is a set of biclus-
ters, each of which contains a set of genes and a set of sam-
ples whose transcriptomic profiles show elevated coherence
among those genes. Put another way, there are a set of tran-
scripts that increase and decrease together, within a set of
samples. These biclusters identify genes that may be part of
a common regulatory program and thus, form the founda-
tion of EGRIN models (Figure 2). The difference between
coherent gene expression among samples within a biclus-
ter and the remaining samples in the data set can be visu-
alized by normalized gene expression (Figure 2, top) or by
examining the standard deviation between transcript levels
of genes within the bicluster (Figure 2, bottom). Here, we
have used the biclusters output by cMonkey2 to (i) group P.
falciparum genes into distinct regulatory programs that are
then associated with TRs to build our EGRIN model, and
(ii) identify genes that are associated with artemisinin resis-
tance or sensitivity by identifying biclusters whose sample
membership showed enrichment for either artemisinin re-
sistant or artemisinin sensitive samples.

Because cMonkey2 involves stochasticity in the biclus-
tering initialization process as well as each iteration of the
optimization process, cMonkey2 runs are not deterministic.
Thus, the biclusters generated between runs are not identi-
cal, and an ensemble of cMonkey2 runs is needed to ensure
the results are statistically robust. To determine the required
number of cMonkey2 runs that would result in a robust
PfEGRIN, we performed runs until 95% of the TR-target
weights generated by the Inferelator from each run showed
convergence based on their average values across runs. We
found that our model showed convergence after 77 cMon-
key2 runs (Supplementary Figures S1, S2).

Identifying candidate transcription regulators

Building an EGRIN model requires both cMonkey2 runs
and a list of TRs as input to the Inferelator (Figure 1).
Our compiled list of TRs includes the ApiAP2 proteins, a

previously compiled list of computationally-predicted
transcription-associated proteins (17), empirically-
analyzed and additional candidate TRs (16), and additional
proteins that we identified as having potential regulatory
activity (Supplementary Table S1). We identified this latter
group of proteins in the interest of being inclusive in our TR
list, given that much of the gene regulatory landscape of P.
falciparum remains uncharacterized. Furthermore, whereas
our network-construction methodology can optimize
the model by removing TRs with little or no regulatory
influence, it cannot add TRs as part of this optimization
process. Therefore, we aimed to compile an inclusive list of
potential TRs so that we did not exclude genes with critical
regulatory roles. Using the InterProScan tool, we identified
proteins in the P. falciparum proteome containing protein
domains that indicate potential gene regulatory functions.
Out of the full P. falciparum proteome, 4996 proteins were
annotated with at least one protein domain. Of these, 105
were annotated with domains that suggested a potential
role as a TR, 92 of which were in the list of 5000 genes used
as input to the cMonkey2 runs (see Identifying biclusters
from transcriptomic data). Twenty-four of the 92 were in
the list of TRs that we had already compiled from literature
sources. Thus, through this analysis, 68 novel candidate
TRs were added to the previously compiled list of TRs,
bringing the number of TRs used to train our EGRIN to
258.

Generating and quantifying the gene regulatory influence net-
work

Using a set of TRs and the biclusters from a cMonkey2 run,
the Inferelator uses elastic net regularization to produce a
list of TR-bicluster pairs with weights that quantify the in-
fluence of the TR on the genes in the bicluster (Figure 1).
These weights are then assigned to each gene in that biclus-
ter to generate a network consisting of weighted edges that
link TR-target gene pairs. For each of our cMonkey2 runs,
we performed a separate Inferelator run to generate a TR-
target network, then aggregated the results from the Infere-
lator runs into an ensemble network as described previously
(19). Using an input set of TR expression values in the en-
semble network, we can then predict the expression level of
an individual gene by identifying which TRs regulate the
gene, then computing the dot product of the weights on the
TRs regulating the gene and the TRs’ expression levels.

In accordance with previous EGRIN modeling efforts,
we initially used the top 100 000 TR-target pairs with the
highest absolute weights in our ensemble network for our
PfEGRIN model. To determine if this cutoff would produce
the most predictive model, we performed an optimization
analysis that compared the predictive capabilities of mod-
els consisting of different numbers of top-ranked TR-target
pairs. This analysis assessed the accuracy of model predic-
tions on mean bicluster gene expression across the 38 500
biclusters generated by our 77 cMonkey2 runs. We found
that a model consisting of 7% (90 300) of the top-ranked
TR-target interactions from the ensemble gene regulatory
network provided the best fit to the training data based on
mean RMSE values (Supplementary Figure S3). The final
PfEGRIN model, therefore, consists of these 90 300 TR-
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Figure 2. Example of cMonkey2 biclustering. Heatmap colors indicate normalized expression values for genes in an example bicluster across 380 transcrip-
tomic samples within the bicluster (gray annotation bar) and 663 samples not in the bicluster (black annotation bar). Scatterplot below heatmap indicates
standard deviation (SD) of expression across genes for each sample. Samples in the bicluster show lower SD (more coherence) compared to the samples
not in the bicluster.

Table 1. Connectivity metrics from the TR-target regulatory network

Number of interactions

Number of genes Number of TRs + −
5000 258 77 639 12 661

target pairs. An R data object file listing these interactions
and their weights is provided in the Supplementary Data.

Gene regulatory network characteristics

The final PfEGRIN model consists of 5000 genes (nodes)
and 90 300 TR-target interactions (weighted edges) (Table
1, Supplementary Figure S4). Positive regulation of target
genes by TRs dominates (86%) the network. All 5000 genes,
including the 258 TRs, are predicted to be regulated by at
least one TR. Five TRs had no influence on the expression
of other genes in the model but were regulated by other TRs.
These included two TRs from the list compiled by Bischoff
and Vaquero (17) (PF3D7 0215700 and PF3D7 1353500)
and three TRs included based on our InterProScan analysis
(PF3D7 1233000, PF3D7 1235400, and PF3D7 1312400),
none of which are members of the ApiAP2 family. Thus,
the model includes 253 TRs that influence the expression of
target genes.

To investigate the topology of the regulatory network, we
performed network analyses focused on the outgoing con-
nectivity (out-degree) of TR nodes. The majority of TRs
regulate a small number of target genes, while few TRs
regulate a relatively large number of target genes (Figure
3A). Comparing the probability density of TRs and their
out-degrees on a log-log scale revealed a linear relationship
(Pearson correlation coefficient = –0.86, P-value = 3.6e–
9), indicating that the network degree distribution follows
a power-law (Figure 3A, inset). This suggests a scale-free
topology, which is a general characteristic of many net-
works in nature and society (60–62). For a scale-free net-
work, the probability of a node having an out-degree of k
follows the power-law function

p (k) ∼ k−γ

where � is the power law scaling exponent. The scaling
exponent of our P. falciparum gene regulatory network is
1.01, which is smaller than empirically-derived exponents
obtained from other eukaryotic model organisms includ-
ing C. elegans (4.12), D. melanogaster (3.04), S. cerevisiae
(2.0) and A. thaliana (1.73) (63). The scale-free connectiv-
ity suggests that gene regulation is performed by a rela-
tively low number of highly influential TRs. We ranked the
TRs based on their out-degrees and plotted the cumula-
tive proportion of TRs against the cumulative proportion
of the corresponding target genes (Lorenz curve (64); Fig-
ure 3B). The deviation of the curve from the line of equal-
ity again demonstrates that a small fraction of TRs regu-
lates a significant number of target genes in the PfEGRIN
model.

As part of these network analyses, we also examined
whether the approach used to compile our TR list was
overly inclusive and resulted in an excess of TRs with low
connectivity. If, for example, the TRs added through our In-
terProScan analysis contained proteins with substantially
less impact on gene regulation, we would expect that the
out-degree distribution of that set of TRs to skew toward
lower out-degrees. However, we found that the distribution
of out-degrees among ApiAP2s proteins, non-ApiAP2 TRs
compiled previously (17), and the additional TRs we identi-
fied in our InterProScan analysis did not differ significantly
(Kruskal–Wallis test, P-value = 0.32, Supplementary Fig-
ure S5). These results indicate that these TR categories in-
fluence the overall network according to a similar pattern
of connectivity and suggest that our approach for compil-
ing TRs was appropriately inclusive.

The majority of TRs (249/258) included in the EGRIN
model influence <1000 genes. There are nine TRs that
each influence >1000 genes with PF3D7 0407600 having
the highest out-degree (1791). Together, these nine TRs in-
fluence 87.8% of the target genes in the model (4390). To
assess their functional roles, we tested each TR’s set of
regulatory targets for enrichment of functional gene sets
from GO, the MPMP resource, and sets associated with
specific parasite life cycle stages. The median number of
sets significantly enriched among these ‘hub’ TRs was 38
(range: 23–73). The TR with the highest number of targets,
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Figure 3. Outgoing connectivity of gene regulatory network. (A) Histogram of out-degree distribution. Orange shading in stacked bar plot indicates
number of ApiAP2 TFs in a bin; blue shading indicates number of other TRs. Inset: Probability density of TRs and their out-degrees on a log–log scale
with regression line. R is the Pearson correlation coefficient. (B) Lorenz curve of TRs and their target genes. Dashed line indicates line of equality.

PF3D7 0407600, showed the highest number of enriched
sets. For all nine TRs, their gene targets were significantly
enriched for GO:antigenic variation, GO:host cell plasma
membrane, MPMP:Interactions between modified host cell
membrane and endothelial cell, MPMP:Rosette formation
between normal and infected RBC, and MPMP:Structure
of telomere and subtelomeric regions (hypergeometric test,
FDR-corrected P-value < 0.05). These results, which link
the predicted ‘hub’ TRs in our model to antigenic vari-
ation and host-parasite cell interactions, are consistent
with the critical functions of ring-stage parasites such
as those whose transcriptomes were used to build our
model (30).

The TR with the highest number of regulatory targets,
PF3D7 0407600, is an uncharacterized gene that has re-
ceived little attention in the P. falciparum gene regulation
literature. It is included in our list of compiled TRs based
on its presence in the TR list compiled by Bischoff and Va-
quero (17) whose analyses identified C2H2-type zinc finger
domains in this protein. The TR’s high predicted out-degree
in our model suggests that the gene’s protein product may
play a critical regulatory role in blood-stage parasite infec-
tions, and our functional gene set enrichment analysis of the
targets of PF3D7 0407600 suggests it may regulate a vari-
ety of biological functions. Gene sets with the highest en-
richment scores include those associated with the parasite’s
gametocyte and late-ring stages as well as protein phospho-
rylation and host-parasite cell interactions.

The TR with the second-highest number of regulatory
targets is PF3D7 1007700 (PfAP2-I). This gene encodes an
ApiAP2 protein that plays a important role in erythrocyte
invasion (11). Our model-predicted targets of PfAP2-I en-
riched for 23 functional gene sets, including sets associated
with antigenic variation, invasion, and host cell remodeling.
These results support previous findings that PfAP2-I plays
a critical regulatory role in the parasite’s blood stage devel-
opment.

The full list of significantly enriched gene sets for all nine
‘hub’ TRs with more than 1000 gene targets is available in
Supplementary Table S2. For some of these TRs, the mecha-
nism underlying their influence on gene expression remains
unknown. Thus, we have also included the protein domains
identified by our InterProScan for each of these nine TRs

in Supplementary Table S2 as they can suggest potential
mechanisms of regulatory action.

Model predictions on gene expression

We evaluated the capability of the PfEGRIN to predict
transcriptomic gene expression levels using three validation
data sets not used to train the model. These transcriptomic
data sets were selected so that the model would be tested
against data obtained from a variety of research groups, us-
ing a variety of measurement modalities, and from blood-
stage parasite populations originating from different re-
gions (Table 2). This allowed us to assess the model’s pre-
dictive capabilities across geographic locations, across tran-
scriptomic platforms/processing pipelines, and across par-
asite populations cultured from clinical isolates or from in
vitro laboratory stocks.

Overall, we found that predictions on validation data
were only slightly less accurate than predictions on the
training data (Table 2). We evaluated the distribution of
RMSE values (Figure 4A) and correlation R values (Figure
4B) when using the PfEGRIN model to predict expression
values for biclustered genes on samples from the training set
(those within a bicluster) and on all samples from the vali-
dation set, or when using a model that predicts expression
based on random value selection from the normal distribu-
tion. Figure 5 shows sample-by-sample model predictions
on validation data set 1 (GEO accession GSE59098) for an
example bicluster in which predictive accuracy on the val-
idation set was equal to the median of the model’s overall
performance and is representative of all biclusters tested.
Figure 5A compares, across samples in validation data set
1, the measured mean normalized gene expression values
for genes in the bicluster against model-predicted values.
Figure 5B shows the correlation between these values. The
RMSE and correlation coefficients for these predictions on
validation data set 1 are similar to the performance of the
model on the training data shown in Figure 5C and D.

The median RMSE values and correlation coefficients
for model-based predictions on data from samples used to
train the model were similar across our three validation tests
(Table 2, Figure 4). Although similar, these values are not
equivalent. This is because some biclusters did not meet
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Table 2. Descriptions of transcriptomic validation data sets used to evaluate the PfEGRIN model’s predictive performance and summary statistics for
each test. Summary statistics for root mean square error (RMSE) and correlation coefficients are presented as median values followed by the inter-quartile
range

Validation test 1 Validation test 2 Validation test 3

GEO accession GSE59098 GSE83667 GSE116341
Associated publication Mok et al. 2015 (30) Milner et al. 2012 (36) Ngara et al. 2018 (37)
Number of samples 110 58 28
Source of parasites Clinical isolates (Cambodia) Clinical isolates (Malawi) In vitro strain Pf3D7
Measurement technique Microarray Microarray RNA-seq
Biclusters evaluated 10 462 6341 10 078
Unique genes evaluated 4515 3985 4473
RMSE for PfEGRIN, training data 0.26 (0.21–0.44) 0.28 (0.21–0.44) 0.26 (0.21–0.44)
RMSE for PfEGRIN, validation data 0.29 (0.22–0.44) 0.29 (0.22–0.38) 0.33 (0.25–0.44)
RMSE for random model, validation data 0.73 (0.65–0.81) 0.72 (0.64–0.81) 0.53 (0.42–0.68)
Correlation coefficient for PfEGRIN, training data 0.97 (0.96–0.98) 0.98 (0.97–0.98) 0.97 (0.96–0.98)
Correlation coefficient for PfEGRIN, validation data 0.95 (0.92–0.97) 0.94 (0.90–0.98) 0.85 (0.69–0.92)
Correlation coefficient for random model, validation data 0.16 (0.03–0.32) 0.18 (0.03–0.34) 0.13 (-0.03–0.29)

Figure 4. PfEGRIN model predictive performance. (A) Distributions of root-mean-squared error (RMSE) in model-based gene expression predictions
across cMonkey2 biclusters generated in building the model. For each of our three validation tests, we used the model to predict mean expression among
biclustered genes across biclustered samples from training data as well as samples from validation data. For comparison, we also made predictions on the
validation data using a model that randomly selects values from a normal distribution. (B) Pearson correlation coefficients (R) for the same predictions in
(A).
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Figure 5. Representative predictions made by the P. falciparum EGRIN model. (A): Measured gene expression levels from the validation test 1 data set
(red) compared to model predictions (blue) for genes in a representative cMonkey2 bicluster. Model accuracy in predicting expression levels for genes in
this bicluster was similar to the model’s overall prediction performance for the validation set. (B) Scatterplot showing correlation between measured and
predicted expression values in (A). R is the Pearson correlation coefficient. (C and D): Same as in (A) and (B), with measured and predicted expression
levels for samples in the GSE59097 training set contained in the bicluster.

our criteria for inclusion in a validation test due to missing
gene expression values (see Materials and Methods) and the
three validation test sets contain different complements of
missing data values. Therefore, the different validation tests
excluded different members of the 38 500 biclusters gener-
ated from our cMonkey2 runs. Consequently, the total num-
ber of unique genes assessed in our evaluations also differed
across validation tests.

Median RMSE scores were similar for PfEGRIN pre-
dictions over the three validation tests and were signif-
icantly lower than those based on random predictions
(P < 2.2e–16 for each validation set; paired Wilcoxon
rank-sum test). Median correlation coefficients between
PfEGRIN-predicted and measured expression values were
high (≥0.85) across the training and validation data sets
(Table 2, Figure 4B).

Model-based versus motif-based ApiAP2 target prediction

We next evaluated the ability of the PfEGRIN to iden-
tify targets of ApiAP2 TFs, which regulate gene expres-
sion throughout different stages of the P. falciparum life cy-
cle. We assessed the agreement between the model-predicted
gene targets of ApiAP2 TFs and targets predicted based on
empirically-determined upstream sequence motifs specifi-
cally recognized by those ApiAP2 TFs (9). Lists of pre-
dicted targets for each ApiAP2 based on upstream binding
motifs were downloaded from plasmodb.org and compared
to targets predicted by our model. Out of 18 ApiAP2 TFs
compared, four showed significant overlap between motif-
based and model-based target lists (hypergeometric test,
FDR-corrected P-value < 0.05). In order of significance,
these ApiAP2s were PF3D7 0802100, PF3D7 1456000,
PF3D7 0604100 and PF3D7 1305200. Notably, mRNA
abundances of the top three TFs have similar dynamics

during the parasite’s intraerythrocytic developmental cycle
(IDC), peaking in the early-mid schizont stage (9).

Incoherent expression is associated with artemisinin resis-
tance

Because the biclusters used to develop the PfEGRIN were
generated using transcriptomes from parasites with various
levels of artemisinin sensitivity, we reasoned that we might
be able to identify biclusters that exhibit concordance selec-
tively in samples showing AR. However, across all 38 500
biclusters generated, no FDR-corrected P-values for AR
sample enrichment fell below 0.81. In contrast, 3202 biclus-
ters (8%) met an FDR-corrected P-value cutoff of 0.05 for
enrichment of AS samples (Figure 6). This suggested that
AR is primarily associated with incoherence rather than co-
herence among gene regulatory programs.

Correlates of artemisinin sensitivity

Considering gene expression was incoherent among AR
samples, we identified the genes and biological functions
most strongly associated with the AS biclusters. We first se-
lected the most high-confidence AS biclusters by identify-
ing those with FDR-corrected enrichment P-values <0.01.
We then tabulated and ranked the number of times each
gene appeared in one of these 710 highly enriched AS bi-
clusters. We identified 111 genes that appeared more of-
ten than would be expected by chance (hypergeometric test,
FDR-corrected P-values < 0.05) (Supplementary Table S3).
Among this set are 35 var, 27 rifin, 8 putative ribosomal
component, 2 ApiAP2 TFs, 2 putative proteasome subunit
and 2 putative dynein heavy chain genes. Interestingly, we
found that the highest-ranking genes were members of the
parasite’s var gene family, which encode a group of immuno-
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Figure 6. Hypergeometric enrichment scores for artemisinin-resistant and artemisinin-sensitive samples among all biclusters generated in constructing the
PfEGRIN. Dashed line indicates –log10 of an FDR-corrected P-value of 0.05.

variant proteins involved in antigenic variation and erythro-
cyte adhesion at sites of vascular infection. They are a cen-
tral component of the parasite’s strategy for evading im-
mune clearance by the host, and a body of evidence suggests
they are under the control of epigenetic pathways (reviewed
in (65)); however, the interpretation of this result based on
microarray data is confounded by the high sequence com-
plexity of genes in the var and rifin families (see Discussion).

To assess the broader landscape of biological functions
associated with AS biclusters, we assessed their enrichment
for the same functional gene sets used to functionally pro-
file ‘hub’ TRs in our PfEGRIN, as described above. We
identified 115 gene sets for which AS biclusters were signif-
icantly enriched (Figure 7, hypergeometric test, P < 0.05).
For this analysis we initially defined enrichment scores with
FDR-corrected P-values <0.05 as significant. However, a
substantial fraction of AS biclusters (68%) exhibited no en-
richment across gene sets using this criterion and thus could
not be functionally profiled. To help illuminate the func-
tional roles of these biclusters, we relaxed the criterion and
defined enrichment scores with uncorrected P-values <0.05
as significant. To ensure that we only included gene sets that
showed enrichment more often than would be expected by
chance, we determined the null distributions of the gene sets
for our biclusters by randomly sampling 710 biclusters from
our complete set of 38 500 and performing functional gene
set enrichment tests on them. This process was repeated
10 000 times to build null distributions for each functional
gene set. For our functional enrichment analysis, we only
included those gene sets that appeared significantly more
often in the 710 AS biclusters as compared to occurrences
in their null distribution (95th percentile or higher).

The gene sets associated with the most prominent of sev-
eral clusters in Figure 7’s heatmap are delineated by the
top-most clade in the first branch of the row dendrogram.
Twenty gene sets in this clade have a relatively high occur-

rence among AS biclusters; 41% of the biclusters are en-
riched in at least one of these sets. Many of these sets in-
clude genes involved in antigenic variation, the export of
cell adhesion proteins to the host cell membrane by the par-
asite, as well as erythrocyte-erythrocyte and erythrocyte-
endothelium adherence. Each of these processes has been
shown to be regulated epigenetically (66) and are central
features of the parasite’s ability to evade immune system
clearance. However, no single functional profile dominates
among the AS biclusters. There are many additional func-
tional gene sets associated with them, including - but not
limited to - sets related to the cell cycle, metabolism, ribo-
some structural components, and ion transport. Thus, AS
appears associated with coherence across a variety of bio-
logical functions, and by extension AR is associated with
incoherence in these functions.

DISCUSSION

The EGRIN model of P. falciparum gene regulation de-
scribed here is capable of making systems-level, quantitative
predictions on samples from three separate validation data
sets with a level of accuracy similar to those reported in pre-
vious EGRIN development efforts that were experimentally
validated (20). We expect the model will serve the research
community as a valuable hypothesis-generation tool for in-
vestigations into P. falciparum’s gene regulatory biology.
The model’s predictive performance across validation data
sets suggests that it is applicable to a variety of P. falciparum
populations, including those clinically isolated from differ-
ent geographic regions and from in vitro laboratory strains.
Thus, it provides a critical step towards using transcrip-
tomic data collected from field-isolated malaria parasites to
predict critical parasite phenotypes and could contribute to
tracking the emergence of drug resistance. Despite the het-
erogeneity in parasite origins and transcriptomic measure-
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Figure 7. Heatmap showing clusters of functional gene sets among the 710 biclusters most highly enriched for artemisinin-sensitive samples. Annotation
bar plot indicates the total number of biclusters that were enriched for a given gene set. The gene sets in the top-most clade in the first branch of the row
dendrogram are shown in the text box.

ment techniques among the three validation data sets, the
predictive performance of the model was generally consis-
tent across validation tests. Even when tested against the
third validation set, which differed from the training set in
that it was obtained from an in vitro laboratory strain as op-
posed to clinical isolates and consists of data from RNA-seq
as opposed to microarray measurements, the model showed
only a modest decrease in predictive performance (Figure
4). This decrease may be due to several factors. Field isolates
likely explore a larger gene expression space than labora-
tory strains, and because our model was trained on field iso-
lates from a variety of locations, its predictive power across
samples from laboratory strains may be reduced compared
to samples collected in the field. Additionally, expression
profiling using RNA-seq provides for a higher dynamic
range than microarray experiments; the differences in ac-
curacy and resolution between these modalities may con-
tribute to the reduced predictive performance on RNA-
seq samples, especially for genes with lower expression
levels.

Comparisons between model-based predictions of
ApiAP2 TF targets and motif-based targets showed sig-
nificant agreement for four out of 18 ApiAP2s tested.
For the three TFs showing the highest level of agreement,
mRNA abundances all peak during a relatively tight time
interval during the early-mid schizont stage of the parasite’s
intraerythrocytic developmental cycle (IDC) (9). Because
our model uses gene expression coherence, as opposed to
abundance, to identify co-regulated genes, the results of this
analysis may be explained by timing differences between
peak coherence of TF targets and peak abundance of TFs
regulating those targets. Based on gene expression levels,
the parasite populations used to train our model were
found to be predominantly in the ring stage and expression
levels of the top three ApiAP2s that showed significant
agreement are relatively low (30). It may be that as the

parasite initiates gene regulatory programs that transition
the organism from stage to stage, ApiAP2-specific binding
motifs become accessible and expression coherence among
genes possessing those motifs is initially high. Then, as
downstream regulatory mechanisms are activated by
these programs, coherence decreases among those genes.
In such a scenario, agreement between model-based and
motif-based TF targets would be highest among TFs whose
expression peaks in more downstream IDC stages. For TFs
with peak expression during the ring stage, the model’s pre-
dicted targets would be influenced by the accumulation of
systems-level changes in the parasite’s regulatory network
brought on by increased TF expression, including feedback
mechanisms influencing the expression of those TFs’ target
genes. Thus, for our model-based versus motif-based target
analysis, we do not necessarily expect agreement to be
high among TFs with peak expression during the ring
stage. We would instead expect agreement to be highest
among TFs whose targets are newly transcriptionally
active.

While the vast majority of predicted P. falciparum TRs re-
quire experimental validation, the model generated here can
guide P. falciparum molecular biology research by identify-
ing which proteins are likely to function as TRs, their pre-
dicted targets, binding sites and biological processes with
which they associate. For example, by determining which
TRs’ target genes are over-represented in biclusters en-
riched for AS samples, we have used the model to create
a ranked list of putative TRs that appear to be associated
with artemisinin sensitivity. We note that the TRs used in
our model likely do not circumscribe the complete list of P.
falciparum TRs. Nonetheless, the accuracy of our model in-
dicates that the TR list we compiled is sufficient to generate
a model with significant predictive power. While the model
can potentially generate insights into P. falciparum’s gene
regulatory programs, we may find that subsequent versions
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