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Abstract: Major depressive disorder (MDD) is a leading cause of global disability with a chronic
and recurrent course. Recognition of biological markers that could predict and monitor response to
drug treatment could personalize clinical decision-making, minimize unnecessary drug exposure,
and achieve better outcomes. Four longitudinal plasma samples were collected from each of ten
patients with MDD treated with antidepressants for 10 weeks. Plasma proteins were analyzed
qualitatively and quantitatively with a nanoflow LC−MS/MS technique. Of 1153 proteins identified
in the 40 longitudinal plasma samples, 37 proteins were significantly associated with response/time
and clustered into six according to time and response by the linear mixed model. Among them, three
early-drug response markers (PHOX2B, SH3BGRL3, and YWHAE) detectable within one week were
verified by liquid chromatography-multiple reaction monitoring/mass spectrometry (LC-MRM/MS)
in the well-controlled 24 patients. In addition, 11 proteins correlated significantly with two or
more psychiatric measurement indices. This pilot study might be useful in finding protein marker
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candidates that can monitor response to antidepressant treatment during follow-up visits within
10 weeks after the baseline visit.

Keywords: major depressive disorder; longitudinal study; LC-MS/MS; plasma protein biomarker;
drug response monitoring; multiple reaction monitoring

1. Introduction

Major depressive disorder (MDD) is one of the leading causes of disability worldwide [1], with a
high prevalence among individuals of all ages and races [2]. MDD is a chronic condition with a high
recurrence rate with a full recovery rate of only 20% and 80% of recovered patients experiencing
at least one relapse in their entire life [3]. Antidepressants have long been used in the acute and
long-term treatment of MDD, with selective serotonin reuptake inhibitors (SSRIs) being the first-line
antidepressants. The process of selecting an antidepressant agent is primarily prescribed based on trial
and error. Patients with poor efficacy of the initial course of medication for at least 4–6 weeks require
alternative therapeutic strategies, containing changing within and between classes of antidepressants.
Unfortunately, the treatment outcomes from antidepressants are discouraging. About 50% of patients
enrolled in the Sequenced Treatment Alternative to Relieve Depression (STAR*D) study failed to
respond to standard SSRI treatment, and only about 30% experienced complete remission in response
to the first antidepressant used [4]. After unsuccessful treatment for MDD patients with a SSRI, the
choice of a second drug is important for remission [5]. Biomarkers for response to antidepressant
treatment can reduce the time to symptom relief and costs, minimize unnecessary drug exposure, and
improve patient outcomes.

Proteomics, the quantitative analysis of all proteins expressed in samples, is a powerful tool for
identifying novel molecular biomarkers and enables the detection of molecular signatures reflecting
multiple biological pathways involved in response to treatment in patients with MDD [6]. Proteomic
analysis of peripheral body fluids, such as blood plasma and serum, may not only enable prediction
of response to treatment in clinical practice, but also assist in monitoring drug activity during early
stages of clinical trials. To date, however, there have been few proteomic analyses of peripheral blood
samples that can predict response to antidepressant treatment [7,8]. A previous liquid chromatography
tandem mass spectrometry (LC-MS/MS) analysis found that several plasma proteins might be potential
biomarkers for the prediction of antidepressant response over a 6-week treatment period [7]. A multiplex
immunoassay testing of up to 258 blood-based markers related to immune, endocrine, and metabolic
mechanisms identified 9 markers as potential pre-treatment biomarkers associated with antidepressants
treatment response [8].

Longitudinal data are commonly used in biomedical studies [9,10]. In statistical analyses,
mixed-effect models (MEMs) [11] and generalized estimating equations (GEEs) [12] are widely applied.
To further elaborate, MEM is a subject-level approach that could employ random effects to acquire a
between-subjects variable by considering the correlations with observations from the same subject
based on the full-likelihood method. Conversely, GEE is a population-level model that relies on a
partial-likelihood function. In this study, repeated drug efficacy measurements (baseline and follow-up
visits after treatment) were performed on the surrogate plasma protein over time for each patient,
with the subject of interest being some of the time-varying changes. In proteomic studies, the MEM
method is more popularly used than the GEE method [13–15]. This is because after fixing the
desired effect, it is possible to estimate by measuring a random effect of the technical or biological
repeated measurement with actual MS [16,17]. In addition, it is technically easier to reflect the variance
of any effect on repeated measurements of the same sample after more than two times of MS. Conversely,
GEE is robust to the misspecification of correlation structure using quasi likelihood, and many modified
variance estimation methods for small samples have been developed [18]. We identified biological
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implications primarily with the results of the analysis with linear mixed model (LMM) and compared
the results after performing with the same data with GEE.

In this preliminary study, LC–MS/MS profiling was performed to identify candidate blood-based
protein biomarkers that could monitor early (0–1 week), mid (1–4 week), or late (4–10 week)
response to antidepressants, before and after their administration. This study also assessed
whether changes in plasma protein concentrations after antidepressant treatment were associated
with changes in the severity of depressive symptoms. Blood samples were collected at four
time points during the 10-week treatment of ten depressed patients, five responders, and five
non-responders, who were taking escitalopram. Plasma proteins were profiled, as were differences
in protein abundance between the two groups. Unlike biomarker studies that don’t take
into account the time of disease occurrence [19–22], this study attempted to identify more
reliable candidate biomarkers by time-dependent longitudinal changes in the plasma proteome
of these patients. Furthermore, the identified biomarkers predicting early-drug response were
validated in 19 responders and five non-responders by the liquid chromatography-multiple reaction
monitoring/mass spectrometry (LC-MRM/MS) technique. In addition, significant markers were
identified assessing the correlation between protein concentrations, as determined by molecular
diagnostic techniques, and psychological parameters.

2. Materials and Methods

2.1. Study Subjects

Since MADRS score is regarded as the criterion for determining response to drug administration,
plasma samples were collected from ten patients with MDD who participated in a clinical trial testing
the efficacy and safety of escitalopram dose escalation at Seoul National University Hospital, Seoul,
Republic of Korea, from February 2013 to February 2016 [23]. All the participants are Korean patients.
The trial included two phases: open-label treatment for 4 weeks with a standard dose (10–20 mg/day)
of escitalopram, followed by randomized, double-blinded treatment for 6 weeks with 20 mg/day or
30 mg/day escitalopram. Patients aged 18–65 years with a primary diagnosis of MDD, as defined by
the Diagnostic and Statistical Manual of Mental Disorders, 4th edition (text revision), were included.
All patients had a total MADRS score≥ 18 at initial screening and baseline visits. Subjects were excluded
if they experienced hypersensitivity to escitalopram, had received any psychoactive medications such
as antipsychotics, mood stabilizers, or selective monoamine oxidase inhibitors, had symptoms of
depression and were deemed resistant to two or more antidepressant treatments, had psychiatric
disorders other than MDD or a prior history of psychiatric disorders, such as manic or hypomanic
episodes, schizophrenia, schizoaffective disorder, or substance abuse disorder, were at significant
risk of suicide, as evaluated by an investigator or with score of ≥ 5 on item 10 of MADRS, or had a
history of neurologic disorders or medically unstable conditions (e.g., renal or hepatic impairment,
or cardiovascular, pulmonary, or gastrointestinal disorders). Of the patients who entered the clinical trial,
five responders (1 male and 4 females) and five non-responders (1 male and 4 females) were selected,
from each of whom plasma samples were obtained at four time points: baseline, week 1, week 4
(randomization), and week 10 (6 weeks after randomization) for proteomic analysis. An additional 24
patients were selected, 19 responders and five non-responders, from each of whom plasma samples were
obtained at baseline and at week 1. The primary efficacy outcome was a change in total MADRS score.
Response was defined as ≥50% reduction in baseline MADRS score after 4 and 10 weeks of treatment.
None of these patients were taking medication that could alter the blood levels of relevant factors,
such as nonsteroidal anti-inflammatory agents or steroids, and none had any acute or chronic diseases,
such as cardiovascular disease, pulmonary disease, hypertension, endocrine abnormalities, rheumatic
diseases, or cerebrovascular disease. The study protocol was approved by the Institutional Review
Board of Seoul National University Hospital (Number: 1008-116-329, approved on 2 December 2010).
The study was performed in accordance with the ethical principles stated in the Declaration of Helsinki
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and the International Conference on Harmonization Good Clinical Practice guidelines. All patients
provided written informed consent and were free to discontinue the study at any time.

2.2. Blood Collection and Plasma Preparation

Plasma was prepared as suggested by the Human Proteome Organization Plasma Proteome Project.
Blood samples (3 mL) were collected into ethylenediaminetetraacetic acid-containing tubes at baseline,
week 1, week 4 (randomization), and week 10 (post-randomization week 6), and the blood samples
were obtained from subjects after an overnight fast (at least 12 h) from 9:30 to 11:30 AM. Blood samples
centrifuged at 2000× g for 15 min at room temperature (RT) immediately after sample collection.
Plasma was transferred to 0.5 mL tubes and frozen within 20 min after centrifugation. Then, the
samples were placed on ice and transported to the laboratory and immediately frozen at –80 ◦C
until assayed.

2.3. Plasma Manipulation and Digestion

Plasma samples were sequentially subjected to high abundant plasma protein depletion and
trypsin/Lys-C digestion. To remove the 14 most abundant plasma proteins (albumin, IgA, IgG,
IgM, α1-antitrypsin, α1-acid glycoprotein, apolipoprotein A1, apolipoprotein A2, complement C3,
transferrin, α2-macroglobulin, transthyretin, haptoglobin, and fibrinogen), a 40 µL aliquot of
plasma diluted 4-fold with a proprietary “Buffer A” was injected into a MARS14 depletion column
(Agilent Technology, Palo Alto, CA, USA) on a binary HPLC system (20A Prominence, Shimadzu,
Tokyo, Japan). The unbound fraction was buffer-exchanged into 8 M urea in 50 mM Tris (pH 8),
concentrated to approximately 50 µL by ultrafiltration using a Vivaspin 500 3 kDa cutoff filter (Sartorius,
Goettingen, Germany), and then transferred to a new filter unit (Nanosep, 30 kDa; Pall Corporation,
NY, USA). A 200 µL aliquot of 8 M urea in 50 mM Tris (pH 8.5) was added, and the mixture was
centrifuged at 14,000× g for 15 min, with the procedure repeated twice. The flow-through from the
collection tube was discarded, 100 µL of 0.05 M iodoacetamide solution was added, and the preparation
was mixed at 600 rpm in a thermo-mixer for 1 min and incubated without mixing for 20 min. The filter
units were centrifuged at 14,000× g for 10 min; 100 µL of 8 M urea in 50 mM Tris (pH 8.5) was added,
and the filter units were again centrifuged at 14,000× g for 15 min, with this step repeated twice.
A 100 µL aliquot of 0.05 M ammonium bicarbonate was added to the filter unit, and the unit was
centrifuged at 14,000× g for 10 min, with this step also repeated twice. A 40 µL aliquot of 0.05 M
ammonium bicarbonate containing 2.5 µg Lys-C/trypsin was added, and the preparation was mixed at
600 rpm in a thermo-mixer for 1 min. The units were incubated in a wet chamber at 37 ◦C for 12 h and
transferred to new collection tubes. The filter units were centrifuged at 14,000× g for 10 min, 40 µL of
0.5 M NaCl was added, and the filter units were again centrifuged at 14,000× g for 10 min. The digestion
reaction was stopped by the addition of formic acid to a final concentration of 0.3%. The peptide
mixture was desalted with a Sep Pak C-18 cartridge (Waters, Milford, MA, USA), lyophilized with a
cold trap (CentriVap Cold Traps, Labconco, Kansas City, MO, USA), and stored at −80 ◦C until used.

2.4. Nano-LC-ESI-MS/MS Analysis

Peptides were separated using a Dionex UltiMate 3000 RSLCnano system (Thermo Fisher Scientific,
Waltham, MA, USA). Tryptic peptides from a bead column were reconstituted in 0.1% formic acid
and separated on a 50 cm Easy-Spray column with a 75 µm inner diameter packed with 2 µm C18
resin (Thermo Fisher Scientific) over 200 min (250 nL/min). The column was developed using a 0–45%
acetonitrile gradient in 0.1% formic acid and 5% DMSO at 50 ◦C. The LC was coupled to a Q Exactive
mass spectrometer with a nano-ESI source. Mass spectra were acquired in a data-dependent mode with
an automatic switch between a full scan and 20 data-dependent MS/MS scans. The target value for the
full scan MS spectra was 3,000,000, with a maximum injection time of 120 ms and a resolution of 70,000
at m/z 400. Repeated peptides were dynamically excluded for 20 s. All MS data have been deposited in
the PRIDE archive (www.ebi.ac.uk/pride/archive/projects/PXD017211) under Project PXD017211 [24].

www.ebi.ac.uk/pride/archive/projects/PXD017211
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2.5. Database Searching and Label-free Quantification

The acquired MS/MS spectra were searched using the SequestHT on Proteome discoverer
(version 2.2, Thermo Fisher Scientific) against the SwissProt human database (May 2017). The search
parameters were set as default including cysteine carbamidomethylation as a fixed modification,
and N-terminal acetylation and methionine oxidation as variable modifications with two miscleavages.
Peptides were identified based on a search with an initial mass deviation of the precursor ion of up to
10 ppm, with the allowed fragment mass deviation set to 20 ppm. When assigning proteins to peptides,
both unique and razor peptides were used. Label-free quantitation (LFQ) was performed using peak
intensity for unique peptides of each protein [25].

2.6. Analysis of Public Microarray Data

We downloaded the gene expression profile data (series accession number: GSE146446 [26]
and GSE45468 [27]) in the Gene Expression Omnibus database for using Biobase and GEOquery
package in R. Both data used the GPL570 platform (Affymetrix Human Genome U133 Plus 2.0 Array;
Agilent Technologies, Palo Alto, CA, USA). We found the Affymetrix probe IDs by searching for the
gene name. Then, subsequent statistical analysis was performed using the gene expression level value
of each gene.

2.7. Batch Mean-Centering Correction, Missing Data Imputation, and Normalization

Three batches were prepared, with batch 1 consisting of S15 (non-responders) and S29
(responders); batch 2 of S54 (non-responders) and S52 (responders); and batch 3 of S6 (non-responders),
S11 (non-responders), S32 (responders), S34 (non-responders), S38 (responders), and S46 (responders),
based on sample preparation date [28]. Mean-centering correction per protein was applied to raw data
from 104 LC-MS/MS analyses to avoid the batch effect [29,30].

Then, missing data imputation was performed. Of 316 quantified proteins measured at one time
in each individual sample, 180 were completely quantified, whereas missing data for the remaining
136 proteins were determined by a local least-squares imputation method [31]. Using this method,
the 180 completely quantified proteins were clustered into 15 groups by Pearson’s correlation analysis,
and missing values were estimated by a linear optimal combination of the 15 selected clusters.

These data were normalized relative to endogenous normalizing proteins without spike-in
standards [32]. From the complete data, six of 210 proteins were finally selected as suitable for LFQ
normalization based on the following criteria: (1) their plasma concentrations remained nearly constant
in all samples, as determined by their NormFinder stability value [33]; (2) their plasma concentrations
did not differ significantly in the five responders and five non-responders, as shown by LMM analysis
(p-value > 0.05); and (3) there were no reports of depression. The raw abundance of the six selected
normalizing proteins, BTD, C8B, C1S, ITIH2, IGFALS, and SERPINA3, in each sample was divided by
the geometric mean of six raw abundances in all samples. The median of these six ratios in a sample
was defined as the normalization scaling factor (NSF) for that sample. The NSF for sample s can be
calculated using the following equation:

NSFs = geomean(
N1,s

N̂1
,

N2,s

N̂2
, . . . ,

N6,s

N̂6
)

where Ni,s is the raw protein abundance of a normalization protein i in sample s, and N̂i is the median
abundance of protein i in all the samples. The normalized abundance of the intensity of each biomarker
candidate in a sample was calculated by dividing its raw peak intensity by the NSF:

˘PA j,s =
PA j.s

NSFs
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where ˘PA j,s is the normalized abundance of the j-th biomarker candidate in sample s, and PA j,s is the
raw abundance of the corresponding protein.

2.8. LC-ESI-MRM/MS Analysis

Liquid chromatography (LC) was performed on an Agilent 1290 Infinity UHPLC System with a
reverse-phase ultra-high-performance LC (UHPLC) column (Agilent ZORBAX Eclipse Plus C18 Column,
95 Å, 2.1 mm i.d. × 100 mm, packed with 1.8 µm C18 resin) at a temperature of 50 ◦C. The mobile
phases used in this study were 0.1% formic acid in water (solvent A) and 0.1% formic acid in acetonitrile
(solvent B). The column was developed using a gradient of 0–2% solvent B for 5 min, 2–3% solvent
B for 5 min, 3–50% solvent B for 10 min, 50–50% solvent B for 4 min, 50–0% solvent B for 1 min,
and 0–0% solvent B for 9 min at a flow rate of 0.3 mL/min. The injected sample consisted of a mixture of
digested plasma peptides (initial plasma volume: 40 µL) and isotope-labeled internal standard peptides.
The UHPLC system was coupled to a triple quadrupole mass spectrometer (Agilent 6495 QQQ) by a
standard-flow Jet Stream electrospray source operated in positive ion mode. Additional parameters
included capillary voltage, 3.5 kV; nozzle voltage, 1 kV; gas temperature, 290 ◦C; drying gas flow rate,
11 L/min at 350 ◦C; nebulizer gas pressure, 40 PSI at 350 ◦C; and unit resolution for Q1 and Q3.
MRM transitions were selected, and their collision energies optimized by Skyline (64-bit, version
19.1.0.193) software (Supplementary Table S4). The cell accelerator voltage was set to 5 V. Quantification
experiments were performed using dynamic MRM (delta retention time: 3 min), with a total cycle
time of approximately 1.5 s. The mass spectrometer was operated with MassHunter software (version
B.08.00, Agilent), which generated MRM/MS data (*.d). MRM results from extracted ion chromatograms
were analyzed by Skyline and quantified relative to the corresponding stable isotope-labeled peptides
(SpikeTides™; JPT Peptdie Technologies Berlin, Germany).

2.9. Statistical Analysis

Data were analyzed using RStudio (version 1.1.456) including R (version 3.6.0). Longitudinal
plasma protein abundance was assessed by LMM analysis (lme4 package), with drug response
(non-response or response), sampling time (baseline, 1 week, 4 weeks, and 10 weeks), and response/time
interaction and technical replications as fixed variables, and individual patients nesting for fixed
variables and individuals as random variables. In the GEE analysis (geesmv package), we merged
plasma abundance as the median of two or three technical replicates and then analyzed drug response,
sampling time, and drug/sampling time. The working correlation structure was set independently,
and Gaussian estimation was performed.

Clustering analysis was based on median protein concentrations in each group (responders
and non-responders) at the four time points, and t-stochastic neighbor embedding (t-SNE) [34]
(perplexity = 2, theta = 0, and dims = 2) and affinity propagation (method = correlation symmetry matrix
and Spearman) were computed using Rtsne and apcluster [35] packages, respectably. Other software
packages included ggline for scatter plots and psygenet2r for mapping proteins on the psychiatric
disorders gene association network (PsyGeNet) at database = ”ALL” [36]. To control type I error by
multiple comparisons, we applied the Bayesian sequential goodness of fit metatest (SGoF) method
of default option (alpha = 0.05, gamma = 0.05, P0 = 0.5, a0 = 1, b0 = 1) in the SGoF R package [37]
for p-values of response/time interaction by LMM analysis and Benjamini–Hochberg procedure [38]
for p-values of MRM paired analysis, and then, we calculated permutated p-values for correlation
analysis [39].

2.10. Literature Search

We performed a literature search on PubTabor central [40] using the keywords “protein name”
AND “major depressive disorder” and identified 48 plasma proteins (37 proteins showing significance
for response/interaction term in LMM and 11 proteins that significantly correlate with two or more
psychiatric indexes). As used here, PubTator Central (PTC) is an online-based web page that
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automatically annotates the association between genes and diseases in PubMed abstracts and PMC
full-text articles.

3. Results

3.1. Demographic and Clinical Characteristics of Study Subjects

The baseline characteristics of the ten study subjects, five responders, and five non-responders,
are summarized in Table 1. Mean (standard deviation (SD)) subject age was similar in responders
(44.2 (14.2) years) and non-responders (42.8 (16.4) years). There were no significant differences between
the two groups in affective symptoms and disease severity, including their scores on the Montgomery
and Asberg Depression Rating Scale (MADRS), the Clinical Global Impression-Severity (CGI-S),
Beck’s Depression Inventory (BDI), the Hamilton Rating Scale for Depression (HAM-D), the Clinically
Useful Depression Outcome Scale (CUDOS), and the World Health Organization Quality of Life
abbreviated version scores including physical, psychological, social, and environmental quality of life
(Supplementary Table S1).

Table 1. Demographic and clinical variables of study subjects.

Variable Responders
(N = 5)

Non-Responders
(N = 5) p-Value

Age (SD) 44.2 (14.2) 42.8 (16.4) 0.841
Male (%) 1 (20) 1 (20) 1.000

Age at onset (SD) 41.8 (11.9) 33.4 (9.8) 0.093
Body mass index (kg/m2) (SD) 23.1 (3.7) 24.7 (4.6) 0.309

Clinical characteristics at baseline

Montgomery and Asberg
Depression Rating Scale (SD) 31.0 (4.6) 28.8 (2.5) 0.599

Clinical Global
Impression-Severity (SD) 5.0 (0.7) 4.2 (1.3) 0.344

Beck’s Depression Inventory (SD) 32.6 (7.3) 26.8 (3.6) 0.206
Hamilton Rating Scale for

Depression (SD) 21.6 (3.4) 21.0 (2.9) 1.000

Clinically Useful Depression
Outcome Scale (SD) 38.4 (12.8) 40.4 (3.0) 0.917

World Health Organization Quality of Life abbreviated version

Physical quality of life (SD) 8.8 (1.7) 8.5 (0.9) 0.831
Psychological quality of life (SD) 8.0 (0.8) 8.3 (1.7) 0.827

Social quality of life (SD) 10.1 (1.5) 11.7 (2.4) 0.193
Environmental quality of life (SD) 10.1 (1.7) 10.1 (1.1) 0.914

p-values appropriately calculated using the Mann–Whitney U test or Fisher’s exact test.

3.2. Plasma Sample Preparations and Development of LC-MS/MS

Four plasma samples were obtained from each of the ten patients, for a total of 40 samples,
and their proteins profiled by LC-MS/MS, with each sample assayed in duplicate or triplicate. A total of
1159 proteins were identified, with 684 proteins quantified by more than half and 206 proteins completely
quantified in 104 of the LC-MS/MS measurements (Supplementary Table S2). Before comparing
plasma protein abundance by the label-free quantification (LFQ) method, six relatively stable and
abundant endogenous proteins (BTD, C8B, C1S, ITIH2, IGFALS, and SERPINA3) were chosen for
data normalization of the abundance of other proteins, as described in the Materials and Methods
section [41,42]. Following normalization of protein abundances in all experiments, sample-to-sample
variations were corrected (Supplementary Figure S1A–C). Normalized abundances showed statistically
significant correlations with the concentrations of plasma proteins (ng/mL) in the plasma proteome
database [43], with a Pearson’s correlation coefficient of 0.677 (adjusted p-value < 0.001; Supplementary
Figure S1D). Assuming technical variations were exceedingly small, only 346 detected proteins
measured at one time in each individual sample were considered, followed by the elimination of
24 proteins associated with plasma depletion, including 14 plasma depletion target proteins and
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ten immunoglobulin-related proteins, and six normalization factors. A total of 316 proteins were
analyzed in the next step, with missing values determined by a least-squares regression approach
(Supplementary Table S3) [31,44].

3.3. Time-Dependent Changes in Plasma Proteins in Responders and Non-Responders

Statistical comparisons of paired plasma protein abundances at baseline and after 1, 4, and 10 weeks
of treatment showed that seven, four, and six proteins, respectively, were upregulated in responders
and 16, 17, and 10 proteins, respectively, were upregulated in non-responders using the Mann–Whitney
test without correction (p-value < 0.05; Figure 1A). The Venn diagram of the three time points, T1,
T4, and T10 is shown in Figure 1B. Proteins upregulated in non-responders were associated with
responses to wounding and stimuli, responses to wounding, and tube morphogenesis in the gene
ontology (GO) biological process (Figure 1C). These findings may reflect the greater number of active
inflammatory pathways with neural circuits of the brain in non-responders [45]. Proteins that fit the GO
terms extracellular structure organization, regulation of complement activation, and triglyceride-rich
lipoprotein particle remodeling were enriched in both groups.

Biomedicines 2020, 8, x FOR PEER REVIEW 8 of 21 

 

3.3. Time-Dependent Changes in Plasma Proteins in Responders and Non-Responders 

Statistical comparisons of paired plasma protein abundances at baseline and after 1, 4, and 10 
weeks of treatment showed that seven, four, and six proteins, respectively, were upregulated in 
responders and 16, 17, and 10 proteins, respectively, were upregulated in non-responders using the 
Mann–Whitney test without correction (p-value < 0.05; Figure 1A). The Venn diagram of the three 
time points, T1, T4, and T10 is shown in Figure 1B. Proteins upregulated in non-responders were 
associated with responses to wounding and stimuli, responses to wounding, and tube morphogenesis 
in the gene ontology (GO) biological process (Figure 1C). These findings may reflect the greater number 
of active inflammatory pathways with neural circuits of the brain in non-responders [45]. Proteins that 
fit the GO terms extracellular structure organization, regulation of complement activation, and 
triglyceride-rich lipoprotein particle remodeling were enriched in both groups. 

Figure 1. Plasma proteomic analyses and functional annotations identifying changes in differentially 
abundant proteins over the first week of drug administration. (A) Time-dependent up- and 
downregulation of differentially abundant proteins compared with the start of drug administration; 
T0. The number of proteins altered at each time point is shown above each time point. (B) Venn 
diagram of proteins differentially abundant at T1, T4, and T10 vs. T0. (C) Gene ontology terms of 
proteins differentially up- and downregulated at T1, T4, and T10 vs. T0. 

LMM is appropriate for identifying differentially abundant plasma proteins based on 
longitudinal proteome data. The response/time interaction term is important in measuring inter-
group differences in time-dependent responsiveness to SSRIs. Through the LMM multiple 

Figure 1. Plasma proteomic analyses and functional annotations identifying changes in differentially
abundant proteins over the first week of drug administration. (A) Time-dependent up- and
downregulation of differentially abundant proteins compared with the start of drug administration; T0.
The number of proteins altered at each time point is shown above each time point. (B) Venn diagram
of proteins differentially abundant at T1, T4, and T10 vs. T0. (C) Gene ontology terms of proteins
differentially up- and downregulated at T1, T4, and T10 vs. T0.
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LMM is appropriate for identifying differentially abundant plasma proteins based on longitudinal
proteome data. The response/time interaction term is important in measuring inter-group differences in
time-dependent responsiveness to SSRIs. Through the LMM multiple comparison analysis, we identified
37 significant proteins which were corrected by a SGoF method [37] (adjusted p-value < 0.05;
response/time interaction term). These proteins over time, as well as the between-group differences,
are shown as lowest adjusted p-values in Table 2.

Table 2. 37 differentially abundant proteins corresponding to response/time interaction.

UNIPROT Accession Adjusted
p-Value Gene Name Protein Name Cluster No. COR a

P04278 2.70 × 10-3 SHBG Sex hormone-binding globulin 5 0.12
P05090 2.95 × 10-3 APOD Apolipoprotein D 6 −0.34 b

Q06033 4.01 × 10-3 ITIH3 Inter-alpha-trypsin inhibitor heavy chain H3 5 −0.21
P08567 4.36 × 10-3 PLEK Pleckstrin 4 0.04
P04275 4.69 × 10-3 VWF von Willebrand factor 6 −0.19
P52566 5.11 × 10-3 ARHGDIB Rho GDP-dissociation inhibitor 2 1 −0.15
P02656 6.89 × 10-3 APOC3 Apolipoprotein C-III 6 −0.06
P06276 7.13 × 10-3 BCHE Cholinesterase 6 −0.11
P27169 8.89 × 10-3 PON1 Serum paraoxonase/arylesterase 1 5 −0.08

P22105-4 9.85 × 10-3 TNXB Tenascin-X 6 −0.25
P02774-3 1.09 × 10-2 GC Vitamin D-binding protein 5 0.04
P0C0L5 1.10 × 10-2 C4B Complement C4-B 5 −0.21
P02649 1.15 × 10-2 APOE Apolipoprotein E 6 −0.04
P07339 1.45 × 10-2 CTSD Cathepsin D 4 0.02
Q92820 1.50 × 10-2 GGH Gamma-glutamyl hydrolase 5 −0.01
P09172 1.69 × 10-2 DBH Dopamine beta-hydroxylase 2 0.03
P40189 1.75 × 10-2 IL6ST Interleukin-6 receptor subunit beta 4 0.15

Q8NBP7 1.81 × 10-2 PCSK9 Proprotein convertase subtilisin/kexin type 9 3 −0.14
Q16610 1.83 × 10-2 ECM1 Extracellular matrix protein 1 2 0.02
P62258 1.83 × 10-2 YWHAE 14-3-3 protein epsilon 6 0.18
P80188 1.83 × 10-2 LCN2 Neutrophil gelatinase-associated lipocalin 6 −0.11

Q9H299 1.99 × 10-2 SH3BGRL3 SH3 domain-binding glutamic acid-rich-like
protein 3 1 0.13

P27918 2.05 × 10-2 CFP Properdin 6 0.08
P08571 2.12 × 10-2 CD14 Monocyte differentiation antigen CD14 2 0.24
P08697 2.33 × 10-2 SERPINF2 Alpha-2-antiplasmin 5 0.22
P36980 2.34 × 10-2 CFHR2 Complement factor H-related protein 2 4 0.16
P08253 2.57 × 10-2 MMP2 72 kDa type IV collagenase 6 0.13
P13671 2.65 × 10-2 C6 Complement component C6 5 0.13

O43852-3 2.80 × 10-2 CALU Calumenin 3 0.10
P14543 2.93 × 10-2 NID1 Nidogen-1 4 −0.05
P35579 2.95 × 10-2 MYH9 Myosin-9 1 0.05
P05160 3.70 × 10-2 F13B Coagulation factor XIII B chain 6 −0.17
P02765 3.75 × 10-2 AHSG Alpha-2-HS-glycoprotein 2 0.20
Q99453 3.85 × 10-2 PHOX2B Paired mesoderm homeobox protein 2B 2 −0.12
O43157 4.01 × 10-2 PLXNB1 Plexin-B1 5 −0.01
P06396 4.26 × 10-2 GSN Gelsolin 6 0.04
O43866 4.41 × 10-2 CD5L CD5 antigen-like 3 −0.27

a Spearman’s correlation coefficient of protein abundance and Montgomery and Asberg Depression Rating Scale
(MADRS) for each protein. b Adjusted p-values < 0.05 on a permutated correlation test based on Spearman’s
coefficient analysis.

To better understand the abundance patterns and to cluster proteins with similar patterns, protein
abundance at three different times (T1, T4, and T10) was subtracted from that at baseline (T0), followed
by t-SNE and affinity propagation (Figure 2A). Six clusters of unique patterns were obtained (Figure 2B).
The three and five proteins in clusters 1 and 4, respectively, decreased over time in responders and
increased over time in non-responders. Cluster 2, which included five proteins, showed little change
over time in responders but decreased over time in non-responders. In cluster 3, three proteins showed
increase from week 1 and appeared flat week 4 onward in responders; conversely, the proteins showed
a sharp decrease at week 4 and then flattened at week 10 in non-responders. In cluster 5, 10 proteins
showed little change over time in responders but increased over time in non-responders. In cluster 6,
11 proteins showed decreases at 4 weeks and increases at 10 weeks in responders but little change
over time in non-responders. The individual abundance profiles of the 37 proteins are shown in
Supplementary Figure S2.
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Figure 2. Affinity propagation clustering, profile analysis, and public database search of the 37 proteins
found to differ significantly in the response/time interaction of linear mixed model (LMM). (A) Identification
of seven protein clusters by t-SNE-based affinity propagation clustering. (B) Change over time in protein
amount in responders and non-responders. (C) Association of 14 proteins found on PsyGeNet with
psychiatric diseases. (D) Association of ten proteins found in the DrugMatrix category of Enrichr with
responses of rat tissues and cells to selective serotonin reuptake inhibitors (SSRIs).

To assess whether the functional roles of these proteins were associated with antidepressant
response and psychiatric disorders, we searched for the 37 proteins in the PsyGeNet (Figure 2C) [36].
APOD, APOE, BCHE, DBH, GGH, GSN, ITIH3, LCN2, MMP2, PHOX2B, PON1, TNXB,
VWF, YWHAE, 14 of these proteins were found to be associated with psychiatric symptoms,
such as schizophrenia, bipolar disorder, cocaine use disorders, substance-induced psychosis,
alcohol use disorders, and depression. In addition, we assessed whether these 37 proteins were
associated with citalopram, an analog of escitalopram, by searching responses of rat tissues and
cells to SSRIs in the DrugMatrix category of Enrichr [46], a web-based gene enrichment analysis tool.
We found that expression of nine proteins, ITIH3, PON1, MMP2, MYH9, APOE, GC, CD14, LCN2,
and CTSD, differed significantly in SSRI-treated and control, corn oil-treated rat liver; the expression of
seven proteins, ITIH3, PON1, LCN2, APOE, GC, CLU, and CTSD, differed significantly in SSRI- and
corn oil-treated rat hepatocytes; and three proteins, PLXNB1, MMP2, and CTSD, differed significantly
in SSRI- and corn oil-treated rat hearts (Figure 2D). It indicated that the drug reaction of these proteins
causes quantitative changes not only in the blood but also in the organs of the liver and heart.

3.4. External Validation in Public Studies of mRNA Expression

Because we could not find a benchmark study on blood protein-based drug responsiveness to
antidepressants, we examined the expression patterns of LMM-significant 37 proteins described in
the results of large-scale studies at the blood circulating cell-free mRNA level from two publicly
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available GEO datasets—(GSE146446 [26] and GSE45468 [27]). Unlike the proteomic study above,
the two GEO studies contained results on the effects of patients receiving a placebo. In the
first GSE146446 dataset, mRNA expression in the blood of 171 depressed patients was studied,
and patients’ responses to an antidepressant vs. the placebo were monitored. The antidepressant
used was duloxetine. These data contain quantitative mRNA expressions in patients before and
after 8 weeks of taking the antidepressant and placebo. There were 96 patients who received
the drug, including 75 responders and 21 non-responders; and 107 patients received the placebo,
including 44 responders and 63 non-responders. The 37 plasma proteins that were significant in
time and response were all found in the dataset, and these were analyzed by LMM. Among them,
MYH9 represented significance for the treatment/response/time interaction term, PCSK9 showed
significance for the treatment/response interaction term (p-value < 0.05), and PLEK showed significance
for treatment/response and treatment/time/response interaction terms (p-value < 0.05; Figure 3A).
The second GSE45468 dataset reflected blood mRNA expression in 52 patients. These data included
mRNA expression in patients before and after 6 h, 24 h, and 2 weeks of infusion of infliximab
and a placebo. There were 23 patients who received the drug, including 12 responders and 11
non-responders, and there were 15 responders and 14 non-responders among 29 patients who
received the placebo. In this dataset, only 13 out of 37 proteins were found and subjected to
LMM analysis. Among them, CALU represented significance for the treatment/time/response interaction
term (p-value < 0.05), and CTSD and SH3BGRL3 represented significance for the treatment/response
interaction term (p-value < 0.05; Figure 3B).
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Figure 3. External validation of LMM-significant 37 proteins in two public GEO datasets (GSE146446 and
GSE45468). (A) In the GSE146446 dataset, the quantitative mRNA expression changes in three genes,
MYH9, PCSK9, and PLEK, before and after 8 weeks of taking the antidepressant and placebo in
responders (blue color) and non-responders (red color). Error bars represent standard error of the mean.
(B) In the GSE45468 dataset, the mRNA expression level of patients for three genes, CALU, CTSD and
SH3BGRL3, before infliximab infusion and after 6 h, 24 h, and 2 weeks is shown in box plots. Responders
are shown in blue color and non-responders are shown in red color.
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3.5. LC-MRM/MS Validation of Candidate Plasma Proteins Predictive of Early Response

The differentially abundant ten proteins that were commonly significant between two groups
at baseline, early treatment phase (from baseline to 1 week; Mann–Whitney U test: p-value < 0.05) and
on the response/time interaction in LMM were selected (Figure 4A) and validated by serial isotope
dilute-MRM/MS [47]. Among them, surrogate peptides were chosen by criteria except for CFHR2,
which had no reliable peptide [48,49].
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Because MADRS score is the standard criterion for determining response to drug administration, 
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Figure 4. Liquid chromatography-multiple reaction monitoring/mass spectrometry (LC-MRM/MS)
validation of ten candidate predictive biomarkers of early-drug response. (A) Venn diagram for
detection of candidate biomarkers by three statistical analyses (T0 vs. T1 and T1–T0 between two groups,
and response/time terms in LMM). (B) Boxplot of abundance of PHOX2B, SH3BGRL3, and YWHAE at
T1 vs. T0, as determined by LC-MRM/MS, in responders (blue color) and non-responders (red color).
* The asterisk identifies the adjusted p-values that are significant at the 0.05 level.

Based on reverse standard calibration curves (Supplementary Figure S3), 15 surrogate peptides
representing nine proteins were selected for protein quantification, and a representative peptide with a
strong signal for each protein was selected based on the LC-MRM/MS results (Supplementary Table S4).
In the validation MRM result, comparing 19 responders and five non-responders, the MYH9 could
not be quantified because the heavy-light ratio was below the limit of quantitation. Of the remaining
eight proteins, the three proteins, PHOX2B, SH3BGRL3, and YWHAE, showed significant differences
on baseline and week 1 in responders (Wilcoxon signed-rank test: FDR-adjusted p-value < 0.05)
but not in non-responders (Wilcoxon signed-rank test: FDR-adjusted p-value > 0.05; Figure 4B).
After 1 week, PHOX2B protein levels increased significantly, whereas SH3BGRL3 and YWHAE protein
levels decreased significantly in responders; conversely, the three proteins did not show any significant
changes in non-responders. By contrast, the level of the other five proteins did not differ significantly
in the two groups (Supplementary Figure S4).

3.6. Relationship between Plasma Proteins and Psychiatric Morbidity Survey Scores

Because MADRS score is the standard criterion for determining response to drug administration,
plasma proteins with high positive or negative correlation with MADRS scores indirectly reflect the
efficacy of the drug. Using Spearman’s correlation analysis of 316 quantified proteins, we determined
the significant correlation relationship between the abundance of the 64 identified plasma proteins and
at least one other psychiatric index, such as CGI-S, BDI, HAM-D, CUDOS, and psychological quality
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of life (PsychoQOL) scores by permutation-based analysis (Supplementary Table S5). Each of these
11 proteins, EXT1, PROC, NUCB1, PROS1, LYVE1, F9, ATRN, HRG, FUCA1, CD109 and ANGPTL6,
significantly correlated with two or more of the psychiatric indices (adjusted p-value < 0.05; Figure 5).
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4. Discussion

In this pilot study, longitudinal analysis with a small sample size (N = 10) may estimate biased
variation and cause inflation of type I error. Statistical techniques using a small sample number have
been developed in psychiatry for circumstances wherein sample collection is not easy [50]. To discuss
this part, we built a GEE model in addition to the LMM model. Compared to LMM, GEE showed
greater statistical validity with a devised variance estimate even in a small number of samples [18].
We applied one of them, the Wang and Long method [51], modified bias-correction and efficiency
improvement. Consequently, we found seven significant proteins for the time/response interaction term
(adjusted p-value < 0.05; Wald test and corrected by SGoF; Supplementary Table S6), overlapping with
five (AHSG, IL6ST, APOD, PHOX2B, and SHBG) of 37 significant proteins found in LMM. Unlike a GEE,
which is a population level-based model and relatively easy to compute, LMM can consider random
effects with technical or biological variation obtained from the whole data, and thus, we considered
the LMM technique more suitable than GEEs [15,50,52].

Regarding protein biomarker candidates, we identified 37 plasma proteins significantly associated
with MDD by the LMM analysis, and these protein biomarkers could be biologically or physiologically
divided into four functional categories through the literature search on PubTabor central [40]. First,
six plasma markers, GC, LCN2, ITIH3, VWF, PHOX2B and YWHAE, were previously reported to
be associated with SSRI efficacy, with the abundances of GC, LCN2, and ITIH3 in plasma samples
associated with response to SSRIs [21,53–55]. Among them, PHOX2B and YWHAE were validated by
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LC-MRM/MS analysis in this study. SSRI stress in human brain cells was reported to be associated
with a PHOX2B transcription factor [56]. The YWHAE genes have been reported to play a significant
role in MDD in the Han Chinese population, with alterations in their protein–protein interactions [57].
The second category is that sex hormones, neurotransmitters, and related proteins have been strongly
associated with depression [58]. In this study, plasma SHBG, which has been previously linked to
depression [59–61], showed the sharpest difference over time between responders and non-responders
(adjusted p-value = 2.70 × 10-3), decreasing gradually with time in responders and increasing
gradually with time in non-responders. We also found that plasma dopamine beta-hydroxylase (DBH)
concentrations increased in responders from 4 to 10 weeks, consistent with low plasma DBH levels
associated with low activity of the noradrenaline system in patients with depression [62–66]. Third,
we found that the plasma proteins GSN and C4B were biomarkers of depression, similar to findings in
previous studies using the same LC-MS platform [67–69]. The level of C4B was significantly higher in
responders than in non-responders and showed a significant change over time. Subsequently, APOD,
PON1, BCHE, and IL6ST were reported to be related to depression, a finding consistent with our
results [21,70–74]. Finally, APOE, CSTD and MMP2 that varied genetically and in mRNA level of
abundance were reported to be associated with depression. We found that the levels of abundance
of two of these proteins, APOE and CSTD, with single nucleotide polymorphisms (SNPs) differed
significantly in responders and non-responders [75–78]. The expression of the MMP2 gene in the brain
was associated with recurrence of depression [55].

Moreover, 11 plasma proteins that strongly correlated with two or more psychiatric indexes were
related with neurological mechanisms and SSRI response. EXT1 was involved in the biosynthesis
of heparan sulfate, which played an important role in the development of the nervous systems
in the brain, and its deletion caused autism-like behavior in mice [79,80]. NUCB1 is known as a
Golgi-resident marker of neurons [81] and interrupts amyloid fibrillation in the brain [82]. PROS1
turned out to be a novel Aβ-responsive protein based on proteome profiling of the hippocampus
in the 5XFAD mouse model [83]. LYVE1 was the upregulated gene expressed in SSRI responders
to non-responders [84], and differential LYVE1 and MHC II expression was used to identify CNS
border-associated macrophages in single cell experiments [85]. ATRN, a neuroprotectant [86], was high
in the SSRI responder in blood proteins. CD109 was higher in the disease group in the plasma proteome
comparison between the psychotic disorder and the normal group [87].

This preliminary retrospective study had several limitations, including its small sample size,
the lack of racial diversity among the study subjects, and the collection of plasma samples at a
single center. Proteomics studies using small specimens are frequent. Typically, 10–50 samples are
used during the preclinical discovery and validation phase, given the analysis of large data sets and
limited timelines [88]. Thus, our results should be considered preliminary findings. All participants
were Korean population, and our results may not be generalizable to other ethnic groups. In addition,
plasma protein abundance may be affected by the plasma preparation method [89,90], but plasma was
rapidly prepared from blood and stored frozen at −80 ◦C to avoid any pre-analytical effect [91–93].
Moreover, alterations in plasma protein abundance may be dependent on the SSRI type and dosage.
In this study, we used samples treated with the same antidepressant (escitalopram) in a relatively
certain range of doses, and this may be a limitation in using the results of this study to predict treatment
responses with other antidepressants. However, this can be considered the strength of this study.
As it is clinically difficult to collect plasma samples using the same type and dose of antidepressants
for patients with major depressive disorders in a prospective design, so far, most studies on protein
biomarkers for antidepressant treatment response have not been able to control the types or doses of
antidepressants [69]. In the view of personalized treatment, predicting whether an individual with
depression will benefit from a particular antidepressant is critical in choosing the right antidepressant;
furthermore, how different types of antidepressants affect plasma proteins should be considered.
In this study, the use of samples treated with the same antidepressant (escitalopram) in a relatively
certain range of doses is considered a strength of this study. A controlled prospective study with a large
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sample size is necessary to establish a clear differential influence of several types of antidepressants
on plasma proteins. Therefore, prospective studies in larger patient cohorts are needed to validate
our findings.

5. Conclusions

To monitor the association between the efficacy of SSRIs and biomarker abundance, plasma samples
were collected for 10 weeks during treatment of patients with MDD. Biomarkers have been identified
through longitudinal measurements of protein concentrations, with some showing significant
correlation with mental disease variables. These findings suggest that the liquid biopsy technique may
solve unmet clinical problems.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9059/8/11/455/s1:
Figure S1. Box plots for protein abundances in each LC-MS/MS run. Protein abundances (a) before and (b) after
endogenous protein-based normalization. (c) Two-dimensional global t-SNE map comparing the responders
(blue) and non-responders (red) at each sampling time (1, 4, and 10 weeks) and 3 t-SNE parameters of perplexity.
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