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Abstract 

The microbiome is recognized as a quasi-organ in the human body. In particular, the gut 

microbiome is correlated with immune function, metabolism, and tumorigenesis. When 

dysbiosis of the microbiome occurs, this variation may contribute to alterations in the 

microenvironment, potentially inducing an inflammatory immune response and providing 

a niche for neoplastic growth. However, there is limited evidence regarding the 

correlation and interaction between the microbiome and tumorigenesis. By utilizing 

microRNA sequencing data of patients with colon and rectal cancer from The Cancer 

Genome Atlas, we designed a novel analytical process to extract non-human small RNA 

sequences and align them with the microbial genome to obtain a comprehensive view of 

the cancer-associated microbiome. In the present study, we identified > 1000 genera 

among 630 colorectal samples and clustered these samples into three distinctive 

colorectal enterotypes. Each cluster has its own distinctive microbial composition and 

interactions. Furthermore, we found 12 genera from these clusters that are associated with 

cancer stages and revealed their putative functions. Our results indicate that the proposed 

analytical approach can effectively determine the cancer-associated microbiome. It may 

be readily applied to explore other types of cancer, in which specimens of the microbiome 

are difficult to collect. 
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Introduction 

The microbiome is a complex community in the human body, which comprises an 

immense number of microbes. It exhibits delicate interplay with the host activities, such 

as shaping the immune system, maintaining epithelium homeostasis, and regulating 

metabolism (1). The composition of the microbiome in various sites of the human body 

differs enormously. For example, the principal phyla in the colon and rectum are 

Firmicutes and Bacteroidetes (2), while the predominant phyla in breast tissue are 

Proteobacteria and Firmicutes (3). When the composition of the microbial community 

changed, relationship between microorganisms and host may also be altered, which may 

promote the development of different diseases. For example the involvement of altered 

microbiome have been reported in asthma (4), inflammatory bowel disease (5), and 

depression and anxiety (6). 

 

The investigation of cancer-associated microbiome has attracted considerable attention 

which may lead towards the development of promising new targets in cancer diagnostics 

and therapeutics. Along with tumor growth, alterations in the composition of the 

microbiome may augment the severity of the disease and influence the tumor 

microenvironment (7,8). A recent study showed that some bacteria, for instance 

Mycoplasma hyorhinis, have the ability to modify the structure of gemcitabine to render 

its anticancer activity (9). Furthermore, microbes, such as Fusobacterium nucleatum 

reside adjacent to tumor may affect immune response and severity of cancer (10). 

 

The 16S rDNA sequencing is the prevalent technique in studying bacteria, which provides 

researchers a rich source of information to distinguish a myriad of bacteria. The 16S 
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rRNA gene is presented in all bacteria and its function and sequence are preserved through 

evolution (11). One of the challenges of using 16S rDNA is its data type which restricts 

the possibility of using large amount of existing data for example The Cancer Genome 

Atlas (TCGA) which provides various omics data of different types of cancers. In this 

report, we proposed a new analytical method for characterizing cancer-associated 

microbiome using the available small RNA-Seq data from cancer patients (Figure 1). 

 

To examine whether our method has the same efficiency of identifying cancer-associated 

microbiome as 16S rDNA sequencing did on colorectal cancer (CRC) as well as the colon 

and rectum cancers, we took the CRC small RNA sequencing results from TCGA dataset 

as the subject of our study. We gathered CRC microRNA sequencing (miRNA-Seq) data 

from TCGA and applied our proposed method to identify the microbiome in each sample. 

We determined > 1,000 genera in 630 samples and obtained similar results as those 

obtained through 16S rDNA sequencing in previous investigations (8,12-14). The 

findings demonstrated that our method has a strong capacity to reveal the cancer-

associated microbiome in CRC and may also be applied to different types of cancers. 

 

 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/807586doi: bioRxiv preprint first posted online Oct. 17, 2019; 

http://dx.doi.org/10.1101/807586
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

Materials and Methods 

Data preparation 

CRC miRNA-Seq bam files were collected from the Genomic Data Commons Data Portal 

(downloaded: September 9, 2018). The files included two categories, namely colon 

adenocarcinoma (COAD; n = 465) and rectum adenocarcinoma (READ; n = 165) (15). 

The SAMtools (version 1.3.1) were used to extract small RNA reads, which were 

unmapped to the human genome in the bam files to generate possible reads originating 

from gut microbiota (16). 

 

Alignment of non-human small RNA reads  

After filtering out the reads mapped to human miRNA and genome, we gathered non-

human small RNA reads for microbiome analysis. The sRNAnalyzer pipeline was used 

for the alignment of non-human small RNA sequences (17). sRNAnalyzer is a specialized 

tool for alignment of small RNAs, which encompasses three procedures, namely 

“Preprocessing”, “Alignment”, and “Summarization”. Several parameters are required 

for data preprocessing and alignment. Accordingly, we set the minimum read length to 20 

nucleotides, allowed reads to map to multiple reference databases for holistic, and 

omnibus mapping results, but not allowed any mismatch in order to obtain the highest 

accuracy of alignment. In the alignment procedure, we utilized the National Center for 

Biotechnology Information (NCBI) nucleotide database and Human Microbiome Project 

gastrointestinal database, provided through sRNAnalyzer, as our primary bacterial 

reference genome (17). However, we modified the procedure of the sRNAnalyzer after 

the alignment step and designed a new process customized for microbiome analysis. 
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Annotation of bacterial small RNA reads 

The alignment results was obtained with two Perl scripts (desProfile.pl and taxProfile.pl), 

which are provided in the sRNAnalyzer selfDev folder, to add information on reads 

including species taxonomy. The reads mapped to multiple species were assigned to their 

common taxon. Moreover, when the count table for each taxonomic rank was generated, 

reads from common taxonomic levels were assigned to a higher level. Therefore, those 

species-ambiguous reads could be assigned correctly to the right taxonomic ranks. 

 

Data Normalization 

Since the microbiota count data contained a considerable number of zeros, we applied 

geometric mean of pairwise ratio (GMPR), a normalization method for zero-inflated data, 

to produce the count table (18). The GMPR normalization method requires two 

parameters, namely the intersection numbers for the minimum number of shared features 

and the minimum number of counts. The intersection numbers of the phylum, class, order, 

family, genus, and species count table were set at 1, 1, 3, 3, 5, and 5, respectively; the 

minimum number of counts we set was the default value provided by the package. 

 

Co-occurrence between genera 

To visualize the bacterial genus co-occurrence network in each cluster, we calculated the 

relative genus abundance (percentage) in each sample, and selected genera that were 

detected in ≥ 20% of samples in the cluster. The Pearson correlation coefficient (PCC) 

was calculated and subsequently Fisher’s z-transformation was used to calibrate the PCC 

according to the sample size in each cluster. The pairs of genera with an absolute value 

of Fisher’s z-transformation ≤ 1.96 was removed. After removing uncorrelated pairs, 
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Cytoscape was used for the computation of topological properties and network 

visualization (19). 

 

RNA-Seq expression data 

CRC RNA expression data were downloaded from TCGA-COAD and TCGA-READ. 

Subsequently, the raw count was normalized with TMM normalization in the edgeR 

package (version 3.24.3) for cross-sample normalization (20). 

 

Functional gene set enrichment analysis 

To demonstrate what biological processes of tumor cells are probably affected by cancer-

associated bacteria, the Spearman correlation coefficient was calculated using the relative 

abundance of bacteria and patient RNA expression data. The fast pre-ranked gene set 

enrichment analysis (21) was applied to glean the candidate biological processes using 

the correlation coefficients as pre-ranked input data. The gene sets of biological processes 

in terms of Gene Ontology (GO) were downloaded from the Molecular Signatures 

Database (21,22). 

 

Univariate survival analysis 

The TCGA-COAD and TCGA-READ patient data were obtained using the R packages 

RTCGA (version 1.12.1) and RTCGA.clinical (version 20151101.12.0) (23). The survival 

analysis was conducted using cancer-associated bacteria as the univariate. We combined 

patient data with genus-relative abundance data, and categorized the samples into high 

and low sets using the median genus-relative abundance in 630 samples. This was 

performed using two R packages, namely survival (version 2.44-1.1) and survminer 
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(version 0.4.3) (24,25). 

 

Statistical analysis and data visualization 

The R package vegan (version 2.5-4) was used for Shannon diversity and evenness 

analysis (26). Heatmaps were produced using the R package ComplexHeatmap (version 

1.99.7) (27). Both the Kruskal–Wallis test and Mann–Whitney U test, shown as box plots, 

were performed using the R package ggpubr (version 0.2) (28). The networks was 

analyzed and computed their topological properties using Cytoscape (version 3.7.1) (19). 

Only the top 15 positive and negative correlations according to their Fisher Z-

transformation value were depicted. 
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Results 

Identification of CRC microbiota 

To explore the microbiota associated with CRC (Figure 1), we mapped non-human small 

RNA reads against data from two microbial reference databases, namely the National 

Center of Biotechnology Information (NCBI) bacteria nucleotide and the National 

Institutes of Health (NIH) Human Microbiome Project. Approximately 626,084 unique 

small RNA sequences were aligned with those of microbial reference genomes, and ≤ 

55.4% of the sequences aligned to specific genera or species. About 20% of the reads 

could be mapped to a myriad of bacteria from different phyla; thus, those sequences were 

excluded from further analysis. To ensure that the count data were not biased due to 

different library size in each sample, the raw count data was consequently calibrated using 

GMPR (18), a specialized normalization method for zero-inflated data like microbiome 

sequencing data, to produce the count table at each taxonomic rank.     

 

Composition of the microbiome in colorectal cancer 

The relative abundance of phyla within the tumor and adjacent normal tissues was 

investigated to determine the phylogenetic composition of the microbiome in colorectal 

cancer (Figure 2A, B). The three predominant phyla identified were Firmicutes, 

Bacteroidetes, and Proteobacteria, which are the prevailing phyla in the human gut 

microbiota (29). The fourth and fifth most abundant phyla were Actinobacteria, and 

Fusobacteria, respectively. Fusobacteria were highly enriched in tumor tissues (Figure 

2B), as shown by previous studies (10,30,31). Fusobacterium nucleatum, one of species 

in the Fusobacteria phylum, is usually detected in CRC and has the ability to generate a 

proinflammatory microenvironment (10,30). In the current study, Fusobacterium 
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nucleatum also had higher abundance in tumor samples (Supplementary Figure S1C). 

Furthermore, Fusobacterium was the third most abundant genus in 630 samples analyzed 

in the current study (Supplementary Figure S1A). Compared with previous research on 

the healthy gut microbiome (29), several of the reported genera were also found in our 

analysis. However, their relative abundance and the order of genera abundance were 

different. These findings demonstrated that several genera may correlate with CRC based 

on their abundance differences with the normal tissues. 

 

The human gut microbiota is affected by diet, age, and other factors, resulting in a 

distinctive gut microbiota in each individual (32). The spectrum of bacterial phylum in 

all samples analyzed in the study is presented in Figure 2D and the results showed unique 

composition for each individual. The samples were then grouped into 3 clusters, 

Cluster_Bac, Cluster_Fuso, and Cluster_Pro, based on relative phylum abundance using 

spherical k-means. The box plots, t-distributed stochastic neighbor embedding (t-SNE; 

Figure 2C), as well as principle component analysis (Supplementary Figure S2) were used 

to illustrate microbiome composition differences among the three clusters. The names of 

these clusters were derived from the most abundant phylum identified in each cluster 

(Figure 2E; Supplementary Figure S3). To examine whether the clustering results were 

affected by the location of cancer (colon vs. rectum), the t-SNE results was replotted 

based on cancer location (Supplementary Figure S1B). TCGA-COAD and TCGA-READ 

were evenly distributed in the t-SNE plot, which suggested the clustering results were 

influenced by bacterial compositions rather than cancer location. We observed the 

differences in Shannon-diversity and evenness index between the three clusters (Figure 

2F). Cluster_Pro exhibited the highest diversity and the most genera abundance 

distributed evenly in predominant genera compared to other clusters. Interestingly, the 
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patients’ guts that was highly enriched with Fusobacteria, Cluster_Fuso showed the 

lowest diversity and evenness in their microbiomes. However, the high abundance of 

Fusobacteria did not show a strong correlation with cancer stage (Table 1). 

 

Since the differences in the phylum composition observed in the three clusters, we 

constructed genus co-occurrence networks (Figure 3A–C) and heatmaps (Supplementary 

Figure S4A–C). We further determined the topological properties of each genus to gather 

more evidence regarding the interplays of genera (Supplementary Table S1–3). Due to 

the complex correlation in the full co-occurrence network, only the top 15 positive and 

negative correlations based on their Fisher Z-transformation values were showed in  

Figure 3. These networks illustrated that each sample cluster exhibited distinctive 

bacterial interplay and different hub genera. For instance, Bacteroides had the third 

highest network degree in the Cluster_Bac co-occurrence network (Supplementary Table 

S1, Figure 3A), and the highest betweenness centrality. This indicated that Bacteroides 

played an important role that might affect other genera and acted as a hub in this network. 

In the Cluster_Fuso co-occurrence network (Supplementary Table S2, Figure 3B), 

although Fusobacterium did not have the highest network degree, Fusobacterium had 

several strong correlations in the network, indicating that Fusobacterium is also a hub in 

the co-occurrence network. 

 

Detection of cancer-associated bacteria 

To detect cancer-associated bacteria, we first selected common bacterial genera which 

were detected in ≥ 20% of the samples. The genus-relative abundance in normal tissues 

adjacent to tumors in the three clusters were compared and calculated. More than 50 

genera with differential abundance in cancer were observed (Supplementary Figure S5). 
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The 25 genera previously reported as cancer-associated bacteria were used to examine 

the consistency of our results with other studies (Figure 4) (7,8,12-14,31,33-37). Several 

genera, such as Porphyromonas, Roseburia, Ruminococcus, Subdoligranulum, 

Bacterodies, and Prevotella, were reportedly increased as well as decreased in CRC; 

hence, we classified these genera in an ambiguous category.  

 

In the category of over-represented bacteria in the cancer-associated microbiome, the 

abundance of Fusobacterium, Streptococcus, Veillonella, Haemopilus, Bilophila, 

Acinetobacter, Phascolarctobacterium, Akkermansia, Escherichia, Enterococcus, 

Parvimonas, and Anaerococcus was consistent with previous studies (12,14,33,34,37). 

However, in Cluster_Fuso these showed lower abundance compared to normal samples. 

In the under-represented category, a portion of the genera in Cluster_Bac and Cluster_Pro 

showed higher abundance than normal samples. According to the complete patient 

clinical data, the correlations between bacterial genus abundance and different cancer 

stages were observed. Both Dorea and Blautia showed a tendency toward decreasing 

abundance along with an advanced cancer stage, despite having a higher average 

abundance than normal samples. Twelve genera including Dorea, Faecalibacterium, 

Roseburia, Pseudoflavonifractor, Sutterella, Pseudomonas, Blautia, Faecalitalea, 

Bacteroides, Subdoligranulum, Amycolatopsis, and Desulfovibrio were considered cancer 

stage-associated bacteria in different clusters (Figure 5). Most of the cancer stage-

associated genera, such as Dorea, Roseburia, and Blautia, exhibited a tendency of 

decreasing abundance along with advanced cancer stage. Only three genera, Faecalitalea, 

Amycolatopsis, and Desulfovibrio, showed higher abundance in stage IV cancer.  
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Biological functions correlate with cancer-associated bacteria 

The finding of cancer stage-associated microbiome population allows us to explore the 

relationships between bacterial abundance and tumor progression, and the possible 

influence of microbiome on host in terms of the perturbed biological processes. The 

correlation between bacterial genera abundance and mRNA gene expression was 

calculated using the Spearman correlation coefficient, and applied pre-ranked gene set 

enrichment analysis methods to identify the enriched biological processes influenced by 

cancer stage-associated bacteria. The top 50 most representative enriched biological 

processes (in GO terms) were selected and displayed their enrichments in different 

cancer-associated bacteria in Figure 6. Among these functions, immune responses (i.e., 

leukocyte activation, leukocyte degranulation, regulation of the T-cell receptor signaling 

pathway, etc.) were highly correlated with the cancer stage-associated microbiome. 

Moreover, several metabolic processes (i.e., fatty acid and carbohydrate catabolic 

processes, oligosaccharide metabolic process, etc.) were also related to the cancer-

associated microbiome. These results provided a holistic picture of plausible effects 

caused by the microbiome and need to be scrutinized by additional studies. 

 

Correlation between bacteria and patient survival  

Survival analysis was conducted to explore whether cancer stage-associated bacteria were 

correlated with patient survival. The patients were into high- and low-abundance groups 

according to the cancer stage-associated microbiome, and found that four genera (Dorea, 

Blautia, Subdoligranulum, and Sutterella) had a strong correlation with patient survival. 

Higher relative abundance of those bacteria was associated with better survival (Figure 

7). A previous study showed that Blautia in the gut microbiome might reduce mortality 
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from graft-versus-host disease (38). Therefore, these four genera may provide new targets 

for the treatment of patients with poor prognosis. 
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Discussion 

A novel analytical approach was developed and used to demonstrate the possibility of 

using the small RNA sequencing data to study cancer-associated microbiome. This 

approach provided results, which were similar to those reported in previous studies using 

16s rDNA sequencing (7,8,12-14,31,33-37). We utilized non-human miRNA reads 

extracted from TCGA-COAD and TCGA-READ miRNA-Seq data. These miRNA-Seq 

data were directly collected from tumor and adjacent normal tissues (39). After extracting 

non-human small RNA reads, we performed sequence alignment against various bacterial 

sequence databases with multiple stringent parameters to yield more accurate results, and 

filtered out unqualified reads during alignment. Owing to the fact that short reads may be 

mapped to multiple species, we considered all possible results and annotated those reads 

with their joint taxonomic rank. In addition, approximately half of the reads that mapped 

to several phyla were excluded, and the remaining reads which could be identified in 

certain taxonomic ranks except phylum. This step is similar to the construction of 

operational taxonomic unit clusters using sequence similarity in 16s rDNA sequencing 

analysis (40).  

 

The 16s rDNA sequencing is based on DNA so each bacterium has one copy; however, 

small RNA sequencing is based on RNA and each bacterium will have many copies.  

When growth condition is better, the levels of rRNA and mRNA in bacteria can be even 

higher. In theory, the RNA-based measurement can provide better picture of bacteria 

composition due to amplification of the signal from one copy (DNA) to thousands or 

millions copies (RNA); however, the amplification process may skew the composition 

since it favors the bacteria that are growing. Nevertheless, the results showed some 
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similarities between the two platforms, suggesting that the dominate signal (composition) 

is faithfully "translated" from DNA to RNA but for weaker signals, the RNA might work 

better. In addition, the RNA-based measurement may also reflect the activity of the 

bacteria community — the less representing groups (in RNA-based measurement 

compared to DNA-based measurement) may be less active. 

 

The five most abundant phyla in both tumor and adjacent normal tissues identified in this 

study (Figure 2A, B) were in agreement with previous findings (7,10,30,31). One of phyla, 

Fusobacteria, was highly enriched in tumor tissues (7,10,30,31). The results indicated 

that Fusobacteria prefer to inhabit tumor tissues rather than adjacent normal tissues (10). 

Moreover, that the results showed that each patient had a distinctive microbiome 

composition (Figure 2D) in tumor tissues, which might be affected by diet, drug treatment, 

age and disease stage. The differences of microbiome composition might produce unique 

microenvironments which correlate with host biological functions (1). Based on the 

spectrum of microbiome, the samples can be classified into three major clusters, namely 

Cluster_Bac, Cluster_Fuso, and Cluster_Pro (Figure 2E) using spherical k-means method . 

The adjacent normal tissues were collected from sites near tumors; therefore, those tissues 

would have the parallel dominant microbes as the tumor tissues. However, there is a small 

portion of microbes changed their abundance in tumor as well as different tumor stages, 

which probably caused by the inter-species competition in the tumor microenvironment 

(Figure 4-5; Supplementary Figure S5). The findings of cancer-associated microbiome 

through mining small RAN sequencing data are similar to prior reports (Figure 4) (7,8,12-

14,31,33-37). Interestingly the genera in Cluster_Fuso exhibited different pattern from 

previous studies (8,13,33,41,42). Fusobacteria were highly abundant in Cluster_Fuso, 

and the genus Fusobacterium negatively correlated with other genera (Figure 3 and 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/807586doi: bioRxiv preprint first posted online Oct. 17, 2019; 

http://dx.doi.org/10.1101/807586
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

Supplementary Figure S3B). Therefore, genus representation in Cluster_Fuso may differ 

from comparing with that reported in previous studies (7,8,12-14,31,33-37). Dorea and 

Blautia had higher abundance in Cluster_Bac and Cluster_Pro and the abundance of them 

declined in parallel with advancing cancer stage (Figure 5). These results were also 

consistent with previous studies (8,12,33,41,42). 

 

Based on large-scale cohort studies and meta-omics resources from the TCGA, several 

techniques were applied to examine the correlation between the cancer-associated 

microbiome and biological functions in tumors. There is one caution of using small RNA 

sequencing data for microbiome analysis, which is short read length. Due to their short 

length, an immense amount of reads could be aligned to multiple species, and only part 

of the reads could be assigned to unique species. This limited the taxonomic resolution of 

the analysis. Nevertheless, in the taxonomic rank of genera, genus count data could 

provide a sufficient amount of reads for further analysis steps, and higher taxonomic ranks 

may yield more robust results. 

 

In conclusion, this method provides a simple and robust approach for analyzing the 

cancer-associated microbiome based on small RNA sequencing data and the findings are 

similar to those obtained using the 16S rDNA method. Currently, colonization of 

numerous body sites by the microbiome has been reported, and an increasing number of 

studies are being conducted to investigate the association between cancer and the 

microbiome. Our method can be applied to different types of cancers and utilized results 

from large-scale cohort studies (e.g., using TCGA data) to identify links between patient 

variables and microbiome. 
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Supplementary Data 

Supplementary Data are available online. 
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Table and Figure Legends 

Table 1. Information regarding the samples in TCGA-COAD, TCGA-READ, and 

the three clusters. 

 

Figure 1. Flow chart of the analysis and detail information for miRNA-Seq data 

processing. 

This diagram illustrates the analysis procedures, including input data, tools used, and 

critical processes during analysis. The diagram also provides several crucial parameters 

which is required for the sRNAnalyzer pipeline to yield more accurate alignment results.  

 

Figure 2. Phylogenetic profiles of the human gut microbiome in colorectal cancer. 

(A, B) Box plots of the relative abundance of bacterial phyla in solid normal tissues (N = 

11) and tumor tissues (N = 616). (C) t-Distributed Stochastic Neighbor Embedding (tSNE) 

was used to perform spherical k-means cluster analysis. Colors represent clusters. (D) 

Stacked bar plot showing the five most abundant phyla in all samples and the rest of phyla 

grouped as “other”. (E) Box plots of phylum composition in the three different clusters, 

which were mostly composed of Bacteroidetes (Cluster_Bac and N = 306), Fusobacteria 

(Cluster_Fuso and N = 56), and Proteobacteria (Cluster_Pro and N = 268). (F), (G) Box 

plots showing diversity and evenness in three different clusters with significant difference. 

The Kruskal–Wallis test was used for comparison between multiple clusters and the 

Mann–Whitney U test was used for comparison of two clusters (shown with the star sign; 

(*p ≤ 0.05 and p > 0.01; **p ≤ 0.01 and p > 0.001; ***p ≤ 0.001). 

 

Figure 3. Bacterial co-occurrence networks in the three clusters. 
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(A–C) Co-occurrence networks of bacterial genera in different clusters, namely (A) 

Cluster_Bac, (B) Cluster_Fuso, and (C) Cluster_Pro. The correlations of edges were 

calculated using the Pearson correlation coefficient. Fisher z-transformation was used for 

normalization according to sample size, rendering the networks comparable. We only 

noted the top 15 positive correlations and top 15 negative correlations in these three 

networks. 

 

Figure 4. Cancer-associated microbiome consistent with previous studies. 

Previous studies reported 25 genera as the cancer-associated microbiome. We categorized 

those genera into three groups based on their representation in CRC: ambiguous, over-

representation, and under-representation. Genera in the ambiguous category were found 

to be both overrepresented and underrepresented in previous studies. The left heatmap 

(colored green) indicates the relative abundance of genera, and each column stands for 

three clusters (normal adjacent samples were removed), normal adjacent samples, and all 

samples. The statistical significance of the three clusters was calculated between tumors 

in each cluster and all normal adjacent tissues using the Mann–Whitney U test (*p ≤ 0.05 

and p > 0.01; **p ≤ 0.01 and p > 0.001; ***p ≤ 0.001). The right heatmap colored with 

log2 (fold change). Fold change was defined as the genus relative abundance in clusters 

divided by the genus relative abundance in normal samples. 

 

Figure 5. Cancer stage-associated microbiome in the three clusters. 

Twelve genera are cancer stage-associated bacteria, and each box plot shows one genus. 

The facet color indicates the cluster in which a genus was identified. Stages shown on the 

x axis were clustered into three categories (stage I, stage II & III, and stage IV). P-values 

labeled in the box plot using the Kruskal–Wallis test for comparison between multiple 
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stages and the Mann–Whitney U test for comparison between two stages (*p ≤ 0.05 and 

p > 0.01; **p ≤ 0.01 and p > 0.001; ***p ≤ 0.001). 

 

Figure 6. Gene ontology related to the cancer stage-associated microbiome. 

We calculated the correlation between biological processes in gene ontology and the 

cancer stage-associated microbiome using gene set enrichment analysis. The heatmap 

presents 50 enriched biological processes and the color indicates normalized enrichment 

score (NES). *adjusted p ≤ 0.05 and p > 0.01; **adjusted p ≤ 0.01 and p > 0.001; 

***adjusted p ≤ 0.001. 

 

Figure 7. Four cancer stage-associated genera correlated with patient survival. 

Kaplan–Meier plots illustrate that the relative abundance of four genera correlates with 

survival. Strata below the Kaplan–Meier plot indicates the number of patients in the high- 

and low-abundance groups. 
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Table 1. Information regarding the samples in TCGA-COAD, TCGA-READ, and the three clusters. 

 

TCGA Colorectal Cancer miRNA 

  Original Data  After Clustering 

  TCGA COAD TCGA READ  Cluster_Fuso Cluster_Pro Cluster_Bac 

Sample Size 
Solid Tissue Normal 8 3  0 5 6 

Tumor 457 162  56 263 300 

Gender 
Male 239 87  29 140 148 

Female 224 77  27 126 157 

BMI Mean / Median 30.18 / 26.83 26.96 / 26.49  26.66 / 26.95 29.88 / 27.76 29.31 / 26.22 

Age at diagnosis Mean / Median 67.46 / 69 64.37 / 66  66.09 / 66.5 66.09 / 68 67.25 / 68 

Cancer Stage 

Stage i 75 29  10 52 42 

Stage ii 175 48  22 78 123 

Stage iii 129 50  17 82 80 

Stage iv 65 24  7 34 48 

Not Reported 13 11  0 17 7 

Note :1. Tumor samples contain 2 recurrent tumor, 1 metastatic, and others are primary tumor. 
          2. The p-value of Pearson’s Chi-squared test with different cluster and cancer stage (without not reported) is 0.1325. 
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Figure 1. Flow chart of the analysis and detail information for miRNA-Seq data processing. 
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Figure 2. Phylogenetic profiles of the human gut microbiome in colorectal cancer. 
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Figure 3. Bacterial co-occurrence networks in the three clusters. 
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Figure 4. Cancer-associated microbiome consistent with previous studies. 
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Figure 5. Cancer stage-associated microbiome in the three clusters. 
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Figure 6. Gene ontology related to the cancer stage-associated microbiome. 
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Figure 7. Four cancer stage-associated genera correlated with patient survival. 
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