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The Pioneer 100 Wellness Project involved quantitatively profiling
108 participants’molecular physiology over time, including genomes,
gut microbiomes, blood metabolomes, blood proteomes, clinical
chemistries, and data from wearable devices. Here, we present a
longitudinal analysis focused specifically around the Pioneer 100
gut microbiomes. We distinguished a subpopulation of individuals
with reduced gut diversity, elevated relative abundance of the genus
Prevotella, and reduced levels of the genus Bacteroides. We found
that the relative abundances of Bacteroides and Prevotella were
significantly correlated with certain serum metabolites, including
omega-6 fatty acids. Primary dimensions in distance-based redun-
dancy analysis of clinical chemistries explained 18.5% of the variance
in bacterial community composition, and revealed a Bacteroides/
Prevotella dichotomy aligned with inflammation and dietary markers.
Finally, longitudinal analysis of gut microbiome dynamics within
individuals showed that direct transitions between Bacteroides-
dominated and Prevotella-dominated communities were rare, sug-
gesting the presence of a barrier between these states. One implication
is that interventions seeking to transition between Bacteroides- and
Prevotella-dominated communities will need to identify permissible
paths through ecological state-space that circumvent this apparent
barrier.
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Technological advances in molecular profiling and deep phe-
notyping of individual humans (i.e., measuring thousands of

health-related biomarkers) are poised to transform biomedicine
in coming years. Accordingly, numerous public and private in-
stitutions recently launched initiatives with the aim of de-
termining how to translate deeply characterized phenotypes into
improvements to health and health care. For example, the Na-
tional Institutes of Health launched the Precision Medicine
Initiative with the goal of creating a voluntary research cohort of
one million individuals to identify genetic drivers of cancers and
other diseases of unknown etiology (1), the Google Baseline
study includes developing wearable technologies to profile bio-
molecules in real time (2), and Human Longevity, Inc., focuses
on aging-associated diseases (3). Furthermore, integrating mo-
lecular profiling into ongoing longitudinal cohort studies, such as
the Framingham Heart Study, has been successful in identifying
genomic drivers of diseases like obesity (4).
In 2014, the Institute for Systems Biology launched the Pio-

neer 100 study (5) as a pilot for the longer-term 100K Wellness
Project (6). As part of the Pioneer 100 study, we densely quan-
tified the molecular profiles of 108 participants over 9 mo,
producing thousands of measurements comprising genome,
blood proteome, blood metabolome, gut microbiome, clinical
chemistries, and activity monitoring (i.e., deep phenotyping). In
contrast to the initiatives described above, we focused on opti-
mizing general wellness as opposed to targeting specific disease
phenotypes. Central to this focus, each participant’s molecular
profile was interpreted alongside a wellness coach (i.e., a

qualified clinician-scientist) who identified actionable opportu-
nities and incorporated individuals’ goals to develop personal-
ized regimens to optimize wellness (5, 7).
An integral element of the Pioneer 100 study was 16S profiling

of the bacterial and archaeal component of the intestinal micro-
biome. The ecology of the gut microbiome directly affects its host
by modulating metabolism (8–12) and influences many diseases,
such as obesity (13), inflammatory bowel disease (14), and di-
abetes (11). Microbiome composition may influence how we me-
tabolize certain foods and has led to calls for personalized diets
(15). A major determinant of variation in the gut microbiome
across people is the dominance of either Prevotella or Bacteroides
(16), which influences the fermentative output of the microbiome
(17) and can determine the outcome of dietary weight loss inter-
ventions (18, 19). However, while dietary intervention was able to
modulate the abundance of Bacteroides relative to Firmicutes (20),
specific dietary modulation of the Bacteroides/Prevotella ratio has
not been thoroughly demonstrated. Specifically, in at least two
studies, controlled, short-term dietary interventions were in-
effective in pushing the microbiome between compositional states
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dominated by Bacteroides or Prevotella, despite the demonstrated
association of these states with long-term diet (16, 21, 22). One
possible explanation is that exclusionary interactions between
these taxa or interactions with the host immune system establish a
hysteresis; i.e., the behavior of the system depends not only on its
input but also on its current and preceding states.
Here, we report a longitudinal analysis of the Pioneer 100

microbiome data and its relationship with metabolomic and
clinical chemistries profiles. We identify within our cohort a
subpopulation distinguished by different levels of bacterial
community diversity (i.e., α-diversity, the number of taxa and/or
the evenness in their abundances within a sample) and by the
dominance of either Bacteroides or Prevotella genera. The
abundances of these taxa correlate strongly with serum metab-
olites, including medium- and long-chain fatty acids. Distance-
based redundancy analysis (dbRDA) identified associations be-
tween the Bacteroides/Prevotella ratio and clinical chemistries
including inflammation markers and cholesterol levels. Finally,
longitudinal analysis of microbiome compositional trajectories
indicates that while the microbiota may occasionally transition
between Bacteroides- and Prevotella-dominated states, direct
transitions are rare. We postulate that antagonistic interactions
between these taxa and/or interactions with the host immune
system forms an impermissive region in microbiome state-space,
which tends to be circumnavigated rather than traversed during
transitions between these two alternative stable states (23).

Results
Nonmetric Multidimensional Scaling Identifies Key Taxa Involved in
Compositional Shifts of the Intestinal Microbiome. The Pioneer 100
pilot study comprised the broad molecular phenotyping of 108
individuals over three quarterly time points (referred to as
rounds). This manuscript focuses on the characterization and
dynamics of the stool microbiome of 101 participants who pro-
vided stool samples, as well as its association with serum me-
tabolite and clinical chemistry profiles. Cohort characteristics are
provided in Table 1. To begin characterizing the community
composition of the Pioneer 100 intestinal microbiome, we ap-
plied nonmetric multidimensional scaling (NMDS) to β-diversity
(i.e., differences in community composition between samples) as
measured by weighted UniFrac dissimilarity (Methods and
Fig. 1). α-Diversity was negatively correlated with NMDS di-
mension 1 (ρ = −0.66, P < 2.20 × 10−16), as was the major in-
testinal phylum Firmicutes (ρ = −0.74, q < 2.20 × 10−16).
Conversely, Bacteroidetes, the other major phylum, was posi-
tively correlated with this dimension (ρ = 0.87, q < 2.20 × 10−16).
In contrast, this structure was not observed by NMDS of Bray–
Curtis dissimilarity (BCD), which does not take into account

phylogenetic relationships among taxa. Dimension 1 of the BCD
NMDS revealed a nonmonotonic association with Bacteroidetes
and Firmicutes (SI Appendix, Fig. S1), possibly indicating two
different subclasses within the high-Bacteroidetes samples.
To further characterize these putative subclasses of high-

Bacteroidetes samples, we compared an equivalent number of
samples from both extremes of BCD NMDS dimension 1 (n = 25
per subsample) (Methods). These two subsamples differed sig-
nificantly in α-diversity (Cohen’s d = −0.28, P < 0.018), and thus
were termed low diversity (LO) vs. high diversity (HI). We in-
vestigated which, if any, operational taxonomic units (OTUs)
disproportionately represented LO vs. HI samples. We chose
stringent selection criteria to preferentially weight more abun-
dant representative OTUs (Methods). Using these criteria, we
found that the OTUs resolving to Prevotella best represented the
LO class (d = 4.94, false discovery rate [FDR] < 6.70 × 10−12),
while those resolving to Bacteroides best represented the HI class
(d = −4.37, FDR < 6.70 × 10−12) (SI Appendix, Fig. S2). Notably,
a single OTU resolving to Prevotella copri dominated the LO
class, while diversity was more evenly spread among multiple
OTUs resolving to genus Bacteroides, likely driving the noted
difference in α-diversity between these classes. Indeed, the Pre-
votella copri OTU represented 61 ± 18% (mean ± SD) of the LO
samples, while the dominant BacteroidesOTU (which resolved to
B. uniformis) represented only 8.5 ± 7.0% of the HI samples.

Bacteroides and Prevotella Correlate with Levels of Serum Metabolites
and Clinical Chemistries. Given their potential to partition micro-
biome samples, we next investigated the potential clinical rele-
vance of these taxa. Specifically, we examined the potential
association of Bacteroides and Prevotella with two molecular pro-
files from the Pioneer 100 study: clinical chemistries and metab-
olomes. We chose to focus on these two components for two
reasons. First, they are most readily interpretable from a clinical
perspective: Many features are already associated with pathways
or phenotypes of interest. Second, like the microbiome, they vary
in time: features have the potential to vary in response to in-
tervention, on a per-individual basis. We observed a number of
statistically significant pairwise correlations between metabolites
and both genera (Dataset S1). Specifically, Bacteroides was anti-
correlated with a number of intermediates of phenylalanine me-
tabolism including p-cresol sulfate, consistent with previous results
from our group (24). p-cresol sulfate is a product of microbial
fermentation and a uremic toxin (25), which we previously found
to be positively correlated to the families Verrucomicrobiaceae
and Desulfovibrionaceae (5). Bacteroides was also negatively
correlated with Verrucomicrobiaceae and Desulfovibrionaceae
(ρ = −0.20, P < 9.6 × 10−4, and ρ = −0.16, P < 0.01, respectively).
Prevotella, in turn, correlated negatively with omega-6 fatty-acid
metabolism and carnitine intermediates, as well as thyroxine, a
prohormone of the metabolism-regulating tri-iodothyronine (T3)
thyroid hormone.
After multiple hypothesis correction, we observed no significant

pairwise correlations between clinical chemistries and Bacteroides or
Prevotella. Subsequently, we employed dbRDA (26) (Methods), a
constrained ordination technique that determines how much vari-
ation in a set of observations can be described by a complementary
set of features (i.e., chemistries). In contrast to other constrained
ordination techniques such as canonical correlation analysis, dbRDA
accommodates (dis)similarity metrics that are non-Euclidean (e.g.,
UniFrac), which are often more relevant to comparison of ecological
communities. Along the first two dimensions, clinical chemistries
accounted for 18.5% of total microbial β-diversity, and partitioned
observations similarly to NMDS as described above. Specifically, di-
mension 1 (explaining 12.7% of β-diversity) separated samples high in
Bacteroidetes from those high in Firmicutes, while among high-
Bacteroidetes samples dimension 2 (explaining 5.8% of β-diversity)

Table 1. Cohort demographics

P100 cohort (n = 101)

Age, mean (SD) 54.6 (13.6)
Sex, % female 41.6
Nonwhite, % 11.9
BMI, median [IQR] 24.6 [22.3–27.9]
Obese (BMI ≥ 30), % 12.9
Participants with data for >1 round, % 87.1
Participants with data for all 3 rounds, % 71.3
HDL, mg/dL, mean (SD) 61.1 (16.6)
% Glycated hemoglobin A1c, median [IQR] 5.6 [5.5–5.8]
Triglycerides, mg/dL, mean (SD) 96.7 (44.2)
C-reactive protein, mcg/mL, median [IQR] 0.9 [0.4–1.9]
TNFα, pg/mL, median [IQR] 4.0 [2.9–5.1]

Abbreviations: BMI, body mass index; HDL, high-density lipoprotein; IQR,
interquartile range; TNFα, tumor necrosis factor α.
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separated those high in Bacteroides from those high in Prevotella (SI
Appendix, Fig. S3).
The loadings of clinical chemistries along the first two di-

mensions are provided in Dataset S2. Along dimension 2, the
chemistry most aligned with Prevotella was tumor necrosis factor
α (TNFα), a marker of systemic inflammation. Conversely, three
of the five chemistries most aligned with Bacteroides were chlo-
ride, sodium, and saturated fat, reiterating the association be-
tween this genus and the high-fat, high-sodium “westernized”
diet (21). A number of other associations are discussed below.
Because there are many explanatory variables in the chemistries
data, we additionally repeated this analysis using stepwise fea-
ture selection (SI Appendix). Furthermore, because the number
of metabolites profiled exceeded the number of samples (n <m),
full metabolomes did not constrain ordination; the multiple re-
gression problem is overdetermined by having more explanatory
variables than observations to fit. Analysis of loadings along di-
mension 2 confirmed a number of correlations reported above
(Dataset S3). Specifically, intermediates of phenylalanine me-
tabolism such as phenylacetate aligned with Prevotella (opposite
Bacteroides), and thyroxine with Bacteroides (opposite Pre-
votella). In addition, a number of tocopherols (class of vitamin E

compounds) aligned positively with Prevotella. We previously
reported these compounds forming a coherent module of co-
variance with plasma lipids and low-density lipoprotein (LDL)
cholesterol (5), effectively adjoining this taxon to this module
despite weaker pairwise correlation scores.

Microbiome Trajectories Reveal Barriers to Transition. Using un-
supervised learning to cluster microbiome samples in high di-
mensions led researchers to suggest that the intestinal microbiome
occupies only a small set of discrete states (termed enterotypes),
and that Bacteroides and Prevotella strongly influence this clustering
(16). In contrast, direct analysis of the abundances of only these
genera suggested that they vary in a relatively continuous manner,
contradicting the claim that microbiome composition varies dis-
cretely (27). Irrespective of whether these states are discrete or
continuous in nature, subsequent experiments associated long-term
dietary patterns with Bacteroides- vs. Prevotella-dominated states
(21). Intriguingly, despite this association with long-term diets,
short-term dietary interventions have not been successful in me-
diating transitions between these two states (21, 22).
Given the established recalcitrance of the Bacteroides-to-Pre-

votella ratio to short-term dietary intervention, we leveraged the
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longitudinal nature of the Pioneer 100 dataset to investigate
potential Bacteroides–Prevotella transitions. Not all regions of
state-space were equally occupied (Fig. 2). Most samples fell
close to the boundary spanning 0% Prevotella abundance, rep-
resentative of this taxon’s relative rarity in the intestine. None-
theless, in rare cases, up to ∼90% of the relative abundance of a
sample was composed of Prevotella spp. Finally, while a contin-
uous distribution of points was observed from Bacteroides to
“Other” (i.e., 1 − [Bacteroides + Prevotella]; see Methods) and
from “Other” to Prevotella, the space representing codominance
of these genera was essentially unoccupied.
To quantify this phenomenon, we compared linear and

polynomial regression models of Bacteroides/Prevotella relative
abundances (Methods). We found that a second-order model of
Bacteroides and Prevotella abundance (which allows for curva-
ture about this “empty” region) explained 75% of the variance,
compared to ∼0% in the linear model. We overlaid on this
space the trajectories of each individual’s microbiome over
time (Fig. 3). We observed that individual trajectories followed
this curvature: While indirect transitions between Prevotella- to
Bacteroides-dominated regions were observed, direct transi-
tions between these spaces were all but absent. Finally, to
quantify this tendency, we calculated the local “permissivity” of
all regions in this state-space. Regions with high permissivity
more easily allow the microbiome to transition directly through
them. The region of state-space dominated by Bacteroides, and
that dominated by “Other” both had high permissivity, in-
dicating both their frequent occupancy and the ease with which
the microbiome can transition between these states. In contrast,
the high-Prevotella region revealed less permissivity. Most
critically, permissivity analysis identified a particularly low-
permissivity region between high Bacteroides and Prevotella
regions, representing an apparent barrier to direct transitions
between these genera (Fig. 3 and SI Appendix). In contrast to
the results described above, we did not observe a low-
permissivity barrier between Bacteroidetes and Firmicutes (SI
Appendix, Fig. S4).

Discussion
There is a growing interest in determining the role the micro-
biome plays in defining human health. Although the choice of
terminology varies by source, the microbiome is now typically

described as a crucial constituent of the human body, rather than
accessory to it (28–30). Accordingly, efforts have shifted from
simply identifying specific pathogens toward community-ecological
approaches (31–33), which associate positive and negative health
states with variation in the composition or functional structure of a
commensal community (34, 35), or with specific health-related in-
teractions between particular taxa or genes (36–38). Taking such an
approach, we identified the genera Bacteroides and Prevotella as
key determinants of community composition and diversity for our
studied population. Relative abundance of these taxa correlated with
fatty-acid metabolic intermediates, and formed an ecological gradient
associated with inflammation and cholesterol markers. Finally, lon-
gitudinal analysis revealed a barrier to direct transition between
Bacteroides- and Prevotella-dominated compositional states.
We identified subclasses of the Pioneer 100 cohort distin-

guished by community diversity levels, and subsequently by the
relative abundance of the genera Bacteroides and Prevotella.
While this cohort did not represent a case-control study, we as-
sociated levels of physiologically relevant metabolites and clini-
cal chemistries with relative abundance of these key genera.
Specifically, samples high in either Bacteroides or Prevotella were
also high in LDL cholesterol, potentially underscoring the in-
fluence of cholesterol on the microbiome, or possibly the influ-
ence of cholesterol-lowering medications on the microbiome.
Furthermore, samples high in Prevotella relative to Bacteroides
were elevated in TNFα, adiponectin, and HDL cholesterol and
reduced in saturated fats and C-reactive protein (CRP). TNFα
and CRP are both inflammation markers, but they aligned op-
posite to one another along this dimension. Previous investiga-
tions demonstrated that TNFα but not CRP levels correlate with
severity of trauma (39) and chronic kidney disease (40), and are
a predictor of morbidity due to sepsis (41), potentially indicating
Prevotella taxa associate with different inflammatory states.
Given that the abundances of these taxa correlated with

wellness markers, we investigated the tendency of individuals to
transition between high-Bacteroides and high-Prevotella states.
We observed transitions between these states (in either direction),
but with a tendency to first pass through a population bottleneck
in which both are relatively depleted. This is of particular note
given the discussion surrounding these genera. Bacteroides and
Prevotella, despite being phylogenetically related, exhibit marked
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exclusionary occurrence across intestinal habitats (42). They are at
the center of the enterotype model of microbiome community
assembly, which posits that communities occupy discrete regions
of compositional state-space (16). Conversely, arguments against
this model attest these genera themselves do not vary in abun-
dance in a discrete manner (27). Our results demonstrate a po-
tential reconciliation between these two arguments: While
microbiota composition generally varies in a continuous manner,
exclusionary interactions maintain quasi-discrete states dominated
by either Bacteroides or Prevotella.
More broadly, the stable high-Bacteroides or high-Prevotella

states may be thought of as attractors, or basins in an energy
landscape representing microbiota composition (31, 32). Once the
system has settled into a basin, microbe–microbe and microbe–host
interactions can prevent transition into the alternate state unless
they first traverse other transitional states. These ecological basins
could be responsible for long-term robustness observed in the
microbiome (43–45). Our analysis suggests that the Bacteroides-
and Prevotella-dominated states can only be traversed through a
phylum-level Bacteroidetes bottleneck, where either genus must be
depleted for the other to invade and establish itself. This is com-
patible with the observation that short-term dietary interventions
were insufficient to initiate transitions between enterotypes (18,
20–22). A potentially successful strategy might involve a two-stage
approach to first diminish Bacteroidetes (e.g., via targeted anti-
microbial application) before subsequently administering a dietary
and/or probiotic intervention to support the desired genus. Alter-
natively, diet could be persistently modified to support the opposite
compositional state, and over time natural perturbations should
lead to bottlenecks that allow the other genus to establish itself in
its preferred niche [e.g., long-term high-fiber diet seems to support
Prevotella dominance (46)]. A recent study characterizing gut
microbiome changes associated with US migration from Thailand
demonstrated that long-term lifestyle and dietary changes are able
to induce a transition from a Prevotella-dominant to a Bacteroides-
dominant state. However, these transitions took months of living in
the United States to manifest themselves and were more pro-
nounced in second-generation Thai Americans relative to Thai
immigrants, indicating the importance of a persistent dietary/life-
style modification in order to facilitate transition between these
two genera (47). If we wish to engineer the gut microbiome to
improve human health (48), we must first understand the forces
that underlie its stability and resilience. In this study, we find that
hysteresis can likely be overcome by mapping out permissive paths
through microbiome state-space.

Methods
Overview of the Pioneer 100 Study. All sample collection and quantification
was performed as part of the Pioneer 100Wellness project at the Institute for
Systems Biology, and approved by the Western Institutional Review Board
(IRB Protocol Number 20121979) (5). All participants recruited for this study
gave written informed consent for analysis of their data. Blood, stool, and
urine samples for all participants were collected during three separate 2-wk
periods, which we refer throughout this manuscript as “rounds.” Rounds
were approximately 3 mo apart, and participants freely scheduled their own
collections each round. A total of 101 of the 108 pioneers provided at least
one stool sample for gut microbiome analysis, and hence were included in
this study. Characteristics of the cohort are provided in Table 1.

Microbiome Data Collection and Processing. Stool sample preparation and 16S
rRNA (V4) sequencing were performed by Second Genome. Once per round,
participants collected personal stool samples at home, using standard Second
Genome collection kits. The 250-bp paired-end MiSeq profiling of the 16S v4
region was performed; ∼200,000 ± 58,500 reads (median ± median absolute
deviation) were generated per sample. Forward reads were trimmed to 150
bp, and any reads not reaching this length were discarded; reverse reads
were not utilized in this analysis. Open reference OTU picking (49) was
performed against the Greengenes database (50) (version 13_8) using Qiime
(51) (version 1.9.1). Rare OTUs, defined here as those not representing 0.01%
of at least one sample, were removed. Remaining OTU counts were unit

normalized. α-Diversity, a measure of the number of OTUs observed within
an individual sample as well as the evenness of their distributions, was
quantified by the effective number of taxa (52) from Shannon’s index (53,
54). β-Diversity, a measure of the diversity distinguishing two or more
samples, was quantified by the Bray–Curtis (54, 55) and the weighted Uni-
Frac dissimilarities (56, 57).

Molecular Profiles of Wellness Markers. Two separate molecular profiles were
analyzed: clinical chemistries and serum metabolomes. As described in the
text, these profiles were chosen for their clinical relevance and in-
terpretability, and because like the microbiome (and in contrast to the ge-
nome), these profiles vary in time and in response to intervention. Features
with more than 100 missing values were discarded: 3-deoxyglucosone
hydroimidazolones, aminoadipic acid, bun/creatinine ratio, (carboxyethyl)
lysine, carboxymethyl-lysine, glyoxal-derived hydroimidazolone G-H1,
homocysteine, and methionine-sulfoxide. eGFR (non-African American) was
discarded as it was redundant (Pearson’s r > 0.99 with eGFR [African
American]). After filtering, 203 clinical chemistries and 257 metabolites were
included in subsequent analyses. Features were independently standard
normalized. Remaining missing values were imputed using a nonparametric
random forest approach (58). Because standard normalization produces
negative values and ecological (dis)similarities are interpretable in the pos-
itive domain, the Euclidean distance was used to quantify pairwise dissimi-
larity between molecular profiles. For any association of microbiome to
molecular profiles, only samples with matching microbiome, metabolome,
and clinical chemistries were analyzed.

Ordination of β-Diversity. Initial ordination was performed using NMDS (59).
In contrast to metric dimensional scaling (principal coordinate analysis),
NMDS attempts to embed observations in a space of arbitrary di-
mensionality such that pairwise dissimilarity in this reduced space is mono-
tonically related to original dissimilarities and is more robust to curvilinear
distortion (60). Analysis of the stress-dimension plot revealed an elbow at
dimension 3 with a stress value of ∼0.010 (SI Appendix, Fig. S5).

Defining and Characterizing Microbiome Subclasses. Ordination of BCD sepa-
rated high-Bacteroidetes samples along a single dimension (SI Appendix, Fig.
S1). For simplicity in preliminary analysis, we used this ordination to define
which set of samples belonged to which class (rather than select along two
dimensions via ordination of UniFrac dissimilarity). Specifically, we selected
samples above 1.0 (n = 25) on the abscissa as the “LO” samples. To compare
balanced classes, we took an equal number of samples from the opposite
end (25 samples less than −0.60 along NMDS dimension 1). Difference in
α-diversity across subclasses was tested by the Wilcoxon rank sum test.

We sought to identify taxa that were not only differentially abundant
across sample classes but were categorically representative of those classes.
To that end, we employed the two-sided Wilcoxon rank sum test with
Benjamini–Yekutieli multiple hypothesis correction (61) (FDR < 0.05), and
further selected only those taxa with Cohen’s d of magnitude greater than
or equal to 4.0. Whereas the P value (and by association, the FDR) represents
the confidence that two samples come from different distributions, Cohen’s
d is a measure of effect size, a difference in magnitude between groups, and
more directly assesses the magnitude change of relative abundance (62).
d values greater than 1.0 typically signify extremely strong effects; our
threshold was chosen ad hoc to identify differential dominant taxa. Fur-
thermore, to investigate whether subclasses as defined indeed represent
distinct breakpoints of dominant taxa, we plotted relative abundance across
NMDS dimension 1 (SI Appendix, Fig. S2). While Bacteroides abundance
trended downward over the entire span, Prevotella appeared to elbow at
∼0.5. Therefore, we infer that the specific choice of cutoff is not absolutely
critical to associate these specific taxa with this dimension.

Multivariate Analysis of Microbiota and Molecular Profiles. We used the
nonparametric Spearman correlation coefficient with Benjamini–Hochberg
multiple hypothesis correction (63) (FDR < 0.05) to determine which analytes
correlated with Bacteroides and which with Prevotella. We further
employed dbRDA to associate β-diversity with molecular profiles (26, 54). We
used the weighted UniFrac dissimilarity with a minor additive constant to
adjust negative eigenvalues (64). Because dbRDA does not perform feature
selection, in the main text we focus on the features with the most extreme
loadings along the second dimension; the full tables are provided in Data-
sets S2 and S3. Subsequently, we performed stepwise feature selection
according to the Akaike information criterion (AIC) (54) (SI Appendix).
Specifically, bidirectional elimination was implemented using function
ordistep in the vegan package with default parameters; at each step, each
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feature’s AIC is tested by permutation; those with P < 0.05 are added to the
model and with P > 0.1 are removed; model selection terminates when no
features can be added or removed or (as in this case) after 50 steps.

Exclusionary Analysis of Taxa. We used regression to quantify the degree to
which a linear relationship could or could not describe the relationship be-
tween pairs of taxon abundances i and j. We first transformed the relative
abundances of taxa into their respective difference:

Δtax = Ai − Aj ,

and their sum subtracted from 1:

σtax = 1 − (Ai + Aj).

This transformation accounts for an antisymmetry in linear regression (e.g.,
the regression of Bacteroides on Prevotella does not equal the regression of
Prevotella on Bacteroides). After such a transformation, Δtax is weighted
equally by both taxa, while σtax and any residuals are weighted by their sum;
subtracting from 1 allows the plot of σtax versus Δtax to correspond with
typical ternary plots. We used ordinary least-squares regression to fit a
straight line (f1) and a second-order polynomial (f2) to these plots. We cal-
culated the percent of variance explained by the second-order model rela-
tive to the first-order from the relative coefficient of determination:

R2
rel = 1 −∑(Δtax − f2)2

∑(Δtax − f1)2
.

In analogy to the standard interpretation of R2, this corresponds to the
amount of additional variance accounted for by the inclusion of a parabolic
term, as opposed to both a constant offset as well as a linear slope.

Calculation of Permissivity.We used the trajectories of individuals’microbiota
to calculate the relative tendency of regions of state-space to permit transit.
We term this property permissivity, in alignment with related concepts de-
lineating the microbiota’s ability to permit or resist variation (44). We define
the permissivity of a point in state-space (Δ, σ) as follows:

P = ∑
⃒⃒
⃒ vp→⃒⃒
vp→

⃒⃒ · vt→|vt→|
⃒⃒
⃒,

where vt→ represents the vector corresponding to a single individual’s micro-
biome trajectory between consecutive timepoints, (Δt+1 − Δt , σt+1 − σt), and
vp → represents the vector pointing to the point for which permissivity is being
calculated,   Δ − Δt , σ − σt( ). In other words, it is the absolute value of the co-
sine of the angle formed between these two vectors, summed over all such
vector pairs. In this analysis, the state-space was subdivided into 400 equally
sized regions corresponding to 5% differences in relative abundance of taxa
along a given face, and the permissivity was calculated at the centroid of these
triangular regions.

Data Availability. All data collected as part of the Pioneer 100 project (5) are
available from dbGaP with accession ID phs001363.v1.p1 (https://www.ncbi.
nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001363.v1.p1).
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