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Figure 5. Differential drug sensitivity of cells associated with two trajectories. a. MITF-GFP 

reporter cell line were sorted for MITF-high and MITF-low subpopulation before drugging. The sorted 

cells were then treated with BRAFi+NFΚBi combination for 5days and then harvest for cell number 

counting. Relative cell survival of sorted MITF-high and MITF-low cells after undergoing 

BRAFi+NFΚBi combination therapy for 5 days were plotted. Survival data were normalized to MITF-

high sample. b. MITF-GFP reporter cell line were sorted for MITF-high and MITF-low subpopulation 

before drugging. The sorted cells were then treated with BRAFi+PKM2i combination for 5days and 

then harvest for cell number counting. Relative cell survival of sorted MITF-high and MITF-low cells 

after undergoing BRAFi+PKM2i combination therapy for 5 days were plotted. Survival data were 

normalized to MITF-low sample. c. MITF knockdown cells and control cells were treated with 

BRAFi+NFΚBi combination for 5days and then harvest for cell number counting. Relative cell survival 

of sorted control and MITF-sh cells after undergoing BRAFi+NFΚBi combination therapy for 5 days 

were plotted. Survival data were normalized to control sample. d. MITF knockdown cells and control 

cells were treated with BRAFi+PKM2i combination for 5days and then harvest for cell number 

counting. Relative cell survival of sorted control and MITF-sh cells after undergoing BRAFi+PKM2i 

combination therapy for 5 days were plotted. Survival data were normalized to MITF-KO sample. e. 

M397 cell treated with BRAFi, BRAFi+NFΚBi, BRAFi+PKM2i and BRAFi+NFΚBi+PKM2i for 5 

days were harvest for cell number counting. Relative cell survival of cells after undergoing BRAFi, 

BRAFi+NFΚBi, BRAFi+PKM2i, or BRAFi+PKM2i+NFΚBi therapy for 5 days were plotted. Survival 

data were normalized to cells undergoing BRAFi monotherapy treatment. 
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We utilized microfluidic-based SCBC technology to characterize the cellular heterogeneity during the 

first five days of drug-response. Because both metabolic activity and signaling pathways display functional 

changes during the early drug-response, SCBC is uniquely suited here since it is capable of simultaneously 

capturing both metabolites and cytoplasmic proteins (and phosphoproteins) from single cells. However, 

unlike single-cell RNA-seq, single cell proteomics is typically limited to assaying only tens of functional 

proteins and metabolites. In order to accurately capture the cell state space accessed by M397 cells under 

BRAFi treatment, we first utilized transcriptomic analysis and literature guidance to define a panel of 20 

analytes that included phenotypic markers, and markers of metabolic activity, oncogenic signaling, and cell 

proliferation, all of which are altered during the initial drug-response. Single cell analysis using this 

carefully selected panel readily resolved the complex cell-state space traversed by the cells during the first 

few days of BRAFi treatment. Of course, moving towards larger numbers of analytes would certainly 

provide for a deeper characterization.67–69 

We utilized computational and theoretical methods32,33,36,37,70–73, integrated with additional cell biology 

experiments, to translate the SCBC kinetic series of snapshots in to classes of single cell trajectories.  

Dimensional reduction of the dataset using the FLOW-MAP algorithm revealed suggested that the cells 

might take one of two paths (labeled “upper” and “lower”) through cell-state space that connected the drug-

naïve cells to the drug-resistant cells. Surprisal analysis of the same data resolved both a time-dependent 

module and a path-dependent module. The path-dependent module suggested that cells traveling along one 

path are separated from the other path by a biophysical barrier, which appeared to be associated with the 

transcription factor MITF and its downstream melanocytic marker MART1. These analyses further 

predicted that the trajectory a specific cell takes is determined by its MITF level prior to drug treatment. 

These predictions were verified experimentally, which supported the integration of computational 

visualization methods with theoretical biophysical approaches to gain insight into a complex biological 

system. Such an approach should be broadly applicable to other dynamic, complex biological systems, 

including studies of cellular differentiation, tumorigenesis, and more.  

Proliferative and invasive phenotypes are well-known in melanoma61,74. MITF, MART1 and Ki67 have 

been reported as robust markers for distinguishing these two phenotypes61,74. We have found that these two 

distinct phenotypes can co-exist even in the untreated, isogenic M397 cell line used in our study. The 

MITFhigh and MITFlow subpopulations not only displayed different doubling time without BRAFi treatment 

but also followed distinct drug-response trajectories upon treatment. This finding is consistent with the 

observations of melanoma phenotype switching from a melanocytic and highly proliferative state to a non-

melanocytic and more invasive state61. In that study, proliferative or invasive cell lines displayed fixed gene 

expression profiles in culture, but when transplanted in vivo, each class generated heterogeneous tumors 
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containing cells with both kinds of expression profile. Consistent with their observation of fixed gene 

expression profiles in vitro, we did not observe significant inter-conversion between cells traveling along 

different paths during the five-day treatment period. These findings suggested that these two phenotypes 

are relatively stable in short term period of BRAFi treatment in vitro. Of course, our in vitro study may not 

fully recapitulate in vivo melanoma biology in which the tumor microenvironment can wield a strong 

influence. Furthermore, we also found that transition towards MITF-low invasive-like phenotype can be 

easily induced by artificial knockdown of a single transcription factor: MITF. This indicates that the 

complex cell-state landscape is likely regulated by very few master-regulators. It also emphasizes the 

importance of MITF as a molecular driver in regulating melanoma phenotype determination75. These 

findings, which add significantly to our understanding of melanoma phenotype regulation, would not have 

been evident had it not been for single-cell analytics.   

The coexistence of two distinct drug-response trajectories even in an isogenic cell line may explain 

the so-called “mixed-responses”, which is commonly observed during the therapeutic treatment of 

melanoma in clinical settings.  Such alternative “escape paths” may also explain why melanomas are so 

refractory to BRAFi targeted therapy. Intriguingly, for each of the two paths, different drug-susceptibilities 

were identified by critical point analysis and network analysis: the upper path was found to be susceptible 

to inhibition of the glycolysis enzyme PKM2, while the lower path is sensitive to NFκb-p65 inhibition. 

These differential drug sensitivity results are consistent with previous bulk studies on invasive phenotypes 

of melanoma: MITF-low, invasive (or mesenchymal) melanoma cells have been reported to be more 

dependent on NFκB signaling12,76, and the single-cell resolution of our study reveals the exact molecular 

and cellular dynamics behind that observation. Co-inhibition of PKM2 and NFκB pathways demonstrated 

superior effects in inhibiting tumor growth, however, both genes are essential regulators in normal cells and 

their inhibition can cause toxicity to non-malignant tissue77,78.  Nevertheless, the resolved heterogeneous 

drug response trajectories update the current understanding of resistance development, and can provide a 

powerful methodology for identifying effective therapy combinations.  
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Methods 

Cell lines, reagents and cell culture    

Patient-derived melanoma cell line, M397, used in this study was generated under UCLA IRB approval 

# 11–003254. Cells were cultured at 37 °C with 5% CO2 in RPMI 1640 with L-glutamine (Life 

Technologies), supplemented with 10% fetal bovine serum (Omega), and 0.2% antibiotics (MycoZapTM 

Plus-CL from Lonza). The cell line was periodically authenticated to its early passage using GenePrint® 

10 System (Promega). Presence of mutations in the genes of interest was checked by OncoMap 3 or Iontrone, 

and was confirmed by PCR and Sanger sequencing as previously described79,80. BRAF inhibitor 

(vemurafenib), PKM2 inhibitor (Compound 3K) and NFκB inhibitor (JSH-23), all from Selleck Chemicals 

LLC, were dissolved in DMSO at designated concentrations before applying to cell culture media. M397 

cells were plated in 10cm tissue culture plate at 60% confluency and treated with 3 µM BRAF inhibitor for 

the specified numbers of days.  

Microchip fabrication and integrated single-cell proteomic and metabolic assay 

The fabrication of the SCBC devices and the protocol of the integrated single-cell proteomic assays 

were extensively discussed in our previous publications44,46. Briefly, the DNA microarrays within each 

microchamber were converted to antibody or Nano-probe microarrays by flowing the DNA-antibody or 

DNA-probe conjugate cocktail solution immediately before use. Cells treated with Gluc-Bio46 were 

randomly loaded into microchambers within the SCBC. Each microchamber has an assay component, and 

a separate reservoir of lysis buffer, and was photographed after cell loading. The SCBC was then cooled on 

ice for cell lysis. Following a 2-hour protein and metabolite capture period at room temperature, the 

microchambers were flushed and the captured protein or metabolite on the arrays were converted into 

fluorescent readout and digitized by a Genepix scanner (Molecular Devices).  

Data processing from Genepix scanner   

By a custom MATLAB code, the average fluorescence signals for all bars within a given barcode were 

extracted and matched with the micrograph of that array to prepare a table that contains the microchamber 

address, the numbers of cells, and the measured fluorescence levels of each assayed protein or metabolite. 

The SCBC readouts from the microchambers with a single cell were collected to form an m × n matrix table 

where each row (m) represents a specific microchamber address and each column (n) represents the 

abundance of a specific analyte. This matrix table is used for further analysis. 

FLOW-MAP Visualizations   

All FLOW-MAP visualizations were created with the FLOWMAPR R package available on GitHub 

(https://github.com/zunderlab/FLOWMAP/). Graphs were produced with seed.X = 1 and no clustering or 

downsampling. Final figures were produced in Gephi (https://gephi.org/) either using the “bluered” palette 
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described in the FLOWMAPR package or using the “jet” rainbow palette. The code used to generate the 

exact FLOW-MAP graphs is available upon request. 

Surprisal Analysis   

Surprisal analysis was applied as previously described57. Briefly, the measured level of analyte i at cell 

c, ln 𝑋𝑖(𝑐), is expressed as a sum of a steady state term ln 𝑋𝑖
0(𝑐), and several constraints (modules) 𝜆𝑗(𝑐) ×

𝐺𝑖𝑗  representing deviations from the steady state. Each deviation term is a product of a cell-dependent 

weight (influence score) of the constraint 𝜆𝑗(𝑐), and the cell-independent contribution of the analyte to that 

constraint (module) 𝐺𝑖𝑗 .To implement surprisal analysis, we compute the singular value decomposition 

(SVD) of the matrix ln 𝑋𝑖(𝑐). This factors this matrix in a way that determines the two sets of parameters 

that are needed in surprisal analysis: the Lagrange multipliers (𝜆𝑗) for all constraints (modules) at a given 

time point, and for all times and the 𝐺𝑖𝑗  (time-independent) analyte patterns for all analyte i at each 

constraint j. In figure 3, cells with the top 10% most positive module2 score are defined as Module2-High 

cells (M2-High cells), and the most negative 10% ones are defined as Module2-Low cells (M2-Low cells). 

Time-lapse microscopy   

Movies were acquired on an Olympus IX8 inverted fluorescence microscope with hardware autofocus 

(ZDC2) and an environmental chamber maintaining a 37C, 5% CO2 culture environment. Automated 

acquisition software (METAMORPH, Molecular Devices) was used to acquire differential interference 

contrast (DIC) and GFP images every 15 min from multiple stage positions. 

Image segmentation and single-cell fluorescence calculation 

Custom MATLAB code (R2017a, MathWorks) was used to pre-process the DIC images of each movie. 

DIC images were first corrected for uneven illuminations of the field, then adjusted contrast to sharpen the 

cell edges. The processed DIC images were then segmented using image segmentation software ilastik81 

(version 1.3.2) to acquire segmented cell bodies. 6 frames (out of 474 frames) were used as the training set 

for image segmentation of each movie. Pixel Classification feature of ilastik 1.3.2 was used to segment 

pixels of all 474 frames into ‘Background’, ‘Cell edge’ and ‘Cell body’ based on the labeled 6-image 

training set of each movie. GFP fluorescence data was extracted from cell body segments using a custom 

Python code. In each movie frame, each separated ‘Cell Body’ pixel block from DIC segmentation was 

first labeled as separated individual single cell. Then GFP fluorescence of each single cell block was 

calculated by integrating fluorescence from the corresponding pixels from GFP images. Background GFP 

fluorescence was calculated by the median GFP values of ‘Background’ pixels, and was subtracted from 

GFP values of ‘Cell Body’ pixels. Mean and standard error of the mean (SEM) were calculated for each 

time point from ensemble single-cell GFP fluorescence. 

Single-Cell Clustering   
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Prior to clustering, all single-cell data were separated by time point (i.e. day 0, day 1, day 3, and day 5). 

Rclusterpp clusters then applied which cluster the cells into 14 subpopulations. Rclusterpp clusters were 

produced using the Rclusterpp R package using all default settings 

(https://github.com/nolanlab/Rclusterpp). All clustering algorithms were performed with cells clustered on 

the following markers: Ki67, Mart1, HIF1a, LDH, AMPKA, p-ERK1, PFK, p-ACAC, Slug, and p-LKB. 

The code used for clustering is available upon request. 

Signaling Activity Indices   

The signaling network activity index (SNAI) value is defined as “the reciprocal of the determinant of the 

protein-protein correlations” in previous publications12. The Ic value or critical transition index is defined 

as “the ratio of the average of all pairs of protein-to-protein correlation coefficients to the average of all 

pairs of cell-to-cell correlation coefficients” and was calculated as described previously64. The code used 

to calculate the SNAI/Ic indices for individual cell clusters is available upon request. 

Network Analysis   

Pair-wise correlation matrices were calculated on within each of the 14 clusters using the Hmisc R package 

(https://cran.r-project.org/web/packages/Hmisc/index.html). Spearman correlations were calculated. 

Correlation output from the Hmisc package produces the pair-wise correlation values matrix. Bonferroni 

corrected p-value was used to filter the correlation network through statistical significance, and the 

correlation networks were drawn using a custom MATLAB code. Hub score and node degree for each 

marker in each correlation network were calculated using the igraph R package. Both scores were rescaled 

from 0 to 1 for each marker for side-by-side comparison and plotted to visualize marker-to-marker variation 

in hub behavior between methods of calculating correlation. The code used to perform the correlation 

network analysis is available upon request. 

mRNA extraction and qPCR    

RNA was extracted from cells using the RNeasy Mini Kit or RNeasy plus Micro Kit (Qiagen) according to 

the manufacturer's protocol. First-strand cDNA was synthesized from extracted total RNAs using the iScript 

cDNA Synthesis Kit (Bio-Rad). The expression of human Slug, MITF, MART1and PFK transcripts were 

analyzed by SYBR Green–based real-time quantitative RT-PCR (qRT-PCR) using specific primers 

purchased from Santa Cruz. Data were normalized to the expression of RPL19 and are expressed as fold 

changes. 

MITF knockdown cell line    

Short hairpin RNA (shRNA) targeting the coding sequence of MITF and control shRNA were purchased 

from Santa Cruz.  Lentiviruses encoding control shRNA and MITF shRNA were produced in HEK-293T 

cells by transient transfection of lentiviral based vectors and their packaging vectors psPAX2 and pMD2.G 

as previously described82. The virus was collected, filtered through a 0.45µm syringe filter after 48 hours 
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and the M397 cells were spin-infected with viral supernatant supplemented with 10 µg/mL polybrene at 

2,500 rpm and 30°C for 90 min.  The transduced cells were selected using puromycin, starting at 3 days 

post-transduction.  

MITF Reporter Cell Line    

The human Tyrosinase Promoter (TP) was subcloned from pLightSwitch Prom S700747 (SwitchGear 

Genomics, Carlsbad, CA) into the BamH1 and EcoRI sites of the lentiviral vector backbone, driving the 

expression of the Zsgreen gene. Lentivirus particles were generated as described above to stably transduced 

M397 cells. A clonal cell line was further generated via single cell sorting and expansion. Cells were then 

sorted as GFPhigh and GFPlow population by BD FACSAria Fusion Cell Sorter for further treatment and 

analysis.  

Fluorescence microscopy   

Images were acquired at 10X (Olympus, 10X FL PH, 0.3 NA) on an EVOS FL Auto Imaging System 

(Fisher Scientific) in YFP and differential interference contrast (DIC) channel. Light or laser intensity, 

exposure and gain were set to be the same between MITFhigh well and MITFlow well. 

Clonogenic assay   

M397 cells were plated onto six-well plates with fresh media at an optimal confluence. The media (with 

drug or DMSO) were replenished every two days. Upon the time of staining, 4% paraformaldehyde was 

applied onto colonies to fix the cells and 0.05% crystal violet solution was used for staining the colonies. 
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Supplementary Figures 

 

Supplementary Figure 1. Transcriptomic analysis guided panel marker selection 

a. Pathways that are differentially altered from day 0 to day 3 after BRAFi treatment. Each row 

represents a certain signaling pathway and each bar indicates normalized enrichment score (NES) 

calculated from geneset enrichment analysis (GSEA) of cells harvested at day 3 versus day 0. Each 

pathway is color-coded by its functional category as described in Fig. S1b. 

b. Panel of markers per pathway selected to quantify with single-cell barcode chip (SCBC) analysis. 

20 markers were selected for SCBC analysis. Markers with similar biological function are 

organized together and color-coded by functional category.  
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Supplementary Figure 2. Distribution of all 20 markers across 4 time points. 

Each of the 20 plots represents the distributions of a certain marker level across 4 time points. Y-

axis represents natural log of measured marker level. Markers within the same functional category 

are boxed together. Border color of each plot corresponds to the functional category of each marker, 

as described in Fig. 1a.  
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Supplementary Figure 3. Visualization of integrated single-cell proteomic and metabolic 

analysis data by FLOW-MAP. 

Each dot represents an individual cell. The distance between each pair of cells represents the 

overall multi-omic dissimilarity between them. Cell pairs that are close enough are linked with an 

edge in between. The colors of the dots in the central panel represent BRAFi exposure time (0, 1, 

3, or 5 days) of the corresponding cells. Dot colors in the other panels represent the abundance of 

each marker in each cell. Markers belonging to the same functional category, as described in the 

bottom of the figure, were assigned to a certain shape and color. The dashed-line box in the panels 

for MITF, MART1, and Ki67 levels shows a small subpopulation of day-0 cells that are slow 

cycling with less melanocytic phenotype. 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/767988doi: bioRxiv preprint first posted online Sep. 12, 2019; 

http://dx.doi.org/10.1101/767988


32 
 

.  

 

Supplementary Figure 4. Dimension reduction with t-SNE and marker abundance 

visualization.  Each dot per plot represents an individual cell. The distance between each pair of 

dots represents the overall multi-omic dissimilarity between that pair of cells. The dot colors in the 

central panel represent the drug exposure time of each cell. Dot colors in the other panels represent 

the abundance of the specified marker in each cell. Markers that belong to the same functional 

category were assigned to a certain shape and color, as described in the bottom of the figure. T-

SNE visualizations show both the heterogeneity that exists at baseline as well as the progression 

across time through two separate paths. 
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Supplementary Figure 5. Two modules from surprisal analysis recapitulated the original 

experimental measured marker levels.  Each plot represents an individual marker. Each dot 

within a single plot represents a single cell. The x-axis value of each dot represents the 

experimentally measured marker expression within a cell. The y-axis value of each dot represents 

the predicted marker level of the same cell as calculated by surprisal analysis of only module1 and 

module2. The strong positive correlation between the x- and y-axis values indicate that surprisal 

analysis of the two modules recapitulates experimentally measured marker levels per cell. 
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Supplementary Figure 6. Two modules from surprisal analysis recapitulated the overall 

experimental measured marker levels.  a. Schematic illustration of workflow to project raw data 

and surprisal analysis-predicted data onto the same 2-dimensional space. Each cell has measured 

levels of all 20 markers. Similarly, each cell also has predicted levels of all 20 markers as 

calculated from surprisal analysis. The raw and surprisal-predicted data matrices were combined 

to make a bigger matrix with double the original number of rows, each row representing a cell 

from raw data or predicted data. Each column represents a single marker, with each matrix value 

representing a single cell’s abundance of a marker. The combined, 20-dimensional dataset was 

projected onto a single t-SNE map where cells with similar levels of all 20 markers will be in 

nearby coordinates.   b. Each dot represents an individual cell. In the left panel, the x-axis 

represents the t-SNE x-value of the cell projected from raw data, while the y-axis represents the t-

SNE x-value of the cell projected from surprisal analysis-predicted data. The right panel is similar 

to left panel, but instead compared t-SNE y-values. The linear, x = y plots indicate that single cells, 

as projected from raw data and from surprisal analysis-predicted data, are in the same location in 

a reduced dimension; therefore, the experimentally measured and surprisal analysis-predicted 

expression profiles of all 20 markers are similar. 
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Supplementary Figure 7. Lambda1 associated markers displayed time dependent changes. 

a. Pearson correlation of marker level vs. module1 score (lambda1) across cells from all timepoints 

of BRAFi exposure. Correlations that are not statistically significant (i.e. p > 0.05) are not shown. 

b. Representative markers that showed strongest positive (AXL, NGFR) or negative (Ki67) 

correlation with module1 score are shown in individual cells on FLOW-MAP. 
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Supplementary Figure 8. Lambda2 associated markers displayed path-specific expression 

patterns. 

a. Pearson correlation of marker level with module2 score (lambda2) across cells from all time 

points after BRAFi exposure. Correlations that are not statistically significant (i.e. p > 0.05) were 

not shown. 

b. Representative markers that showed strongest negative correlation with module1 score are 

shown in individual cells on FLOW-MAP. 

  

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/767988doi: bioRxiv preprint first posted online Sep. 12, 2019; 

http://dx.doi.org/10.1101/767988


37 
 

 

Supplementary Figure 9. Four different cell states inferred from Module1 and Module2 

associated biophysical barriers. 

Module1 and module2-associated barriers, as defined by the points at which a module score 

changes sign, separate the cells into roughly 4 different states, labeled from 1 to 4. States 1 and 2 

are separated from states 3 and 4 by the module1-associated barrier. States 1 and 3 are separated 

from states 2 and 4 by the module2-associated barrier. 
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Supplementary Figure 10. Day-0 cell analysis of marker correlation with module2, 

suggesting MITF as the driver for bifurcation in cell state transition trajectories. a. Pearson 

correlation of marker level and module2 score in day 0 cells from single-cell dataset. The four 

most highly-correlated markers are labeled with gray arrows. b. Scatter plots showing expression 

levels of the four most highly-correlated markers versus module2 score in day-0 cells from single-

cell dataset. 
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Supplementary Figure 11. Illustration of MITF-reporter line sorting experiment on 

untreated cells.  a. Untreated cells in state 1 and state 2 showed significantly different levels of 

MITF and Ki67. b. For MITF-GFP reporter line, cells with higher GFP level and lower GFP 

level were sorted out using FACS. The sorted cells were then harvested for qPCR quantitation of 

MITF and Ki67 expression. 
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Supplementary Figure 12. Sorted state 1 and state 2 cells shows different MITF-GFP level 

and morphology. 
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Supplementary Figure 13. Illustration of MITF-reporter line sorting and drug treatment 

experiments.  a. Day-5 cells in state 3 and state 4 showed different levels of MITF, MART1, PFK 

and Slug. b. For MITF-GFP reporter line, cells with higher GFP level and lower GFP level were 

sorted out using FACS. The sorted cells were then treated with BRAFi for another five days, then 

harvested for qPCR quantitation of MITF, MART1, PFK and Slug expression. 
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Supplementary Figure 14. MITF knock-down cells showed similar phenotype as sorted state 

2 day-0 cells which will follow the bottom trajectory to become state 4-like cells upon 5days 

of BRAFi.  a. Expression level of Ki67 from qPCR of MITF knockdown cells versus control cells. 

b. Measured doubling time of MITF-knockdown cells versus control cells. c. Expression level of 

MITF, MART1, PFK and Slug after 5 days of BRAFi treatment in control cells and MITF-

knockdown cells. 
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Supplementary Figure 15. Ic value of single cells for critical point transition analysis of 

each trajectory.  a. Critical point transition analysis for upper path. Critical point index Ic is 

calculated within each subpopulation associated with the upper path and color-coded onto the 

FLOW-MAP. Red indicates higher Ic value. Blue represents lower Ic value. Cluster 7, circled 

and labeled, shows the highest Ic value in the upper path.  b. Critical point transition analysis for 

lower path. Critical point index Ic is calculated within each subpopulation associated with the 

lower path and color-coded onto the FLOW-MAP. Red indicates higher Ic value. Blue represents 

lower Ic value. Cluster 9, circled and labeled, shows the highest Ic value in the lower path.  
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Supplementary Figure 16. Network structure and respective SNAI and Ic values for 

subpopulations associated with the upper path.  a. Network of subpopulations associated with the 

upper path. Each network structure plot is bordered by the color label of the corresponding cluster.  

b. SNAI and Ic values of networks associated with subpopulations in the upper path. 
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Supplementary Figure 17. Network structure and respective SNAI and Ic values for 

subpopulations associated with the lower path.  a. Network of subpopulations associated with the 

lower path. Each network structure plot is bordered by the color label of the corresponding cluster.  

b. SNAI and Ic values of networks associated with subpopulations in the lower path. 
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Supplementary Figure 18. Hub-score of each node at networks for cluster7 (C7) and 

cluster9 (C9).  Colors in C7 and C9 columns indicate the hub-score value of each node found 

within the cluster 7 or cluster 9 networks, respectively. Nodes labeled with stars were further 

tested using drug perturbation. 
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Supplementary Figure 19. Short-term clongenic assay for 397 cells.  M397 was treated with 

either DMSO control or PKM2i or NFKBi or PKM2i+NFKBi or BRAFi. No significant toxicity 

to the cells was observed for using PKM2i or NFKBi or combination of both. 
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