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Abstract

Motivation: Knowledge graphs (KGs) are being adopted in industry, commerce and academia. Biomedical KG
presents a challenge due to the complexity, size and heterogeneity of the underlying information.

Results: In this work, we present the Scalable Precision Medicine Open Knowledge Engine (SPOKE), a biomedical
KG connecting millions of concepts via semantically meaningful relationships. SPOKE contains 27 million nodes of
21 different types and 53 million edges of 55 types downloaded from 41 databases. The graph is built on the frame-
work of 11 ontologies that maintain its structure, enable mappings and facilitate navigation. SPOKE is built weekly
by python scripts which download each resource, check for integrity and completeness, and then create a ‘parent
table’ of nodes and edges. Graph queries are translated by a REST API and users can submit searches directly via an
API or a graphical user interface. Conclusions/Significance: SPOKE enables the integration of seemingly disparate
information to support precision medicine efforts.

Availability and implementation: The SPOKE neighborhood explorer is available at https://spoke.rbvi.ucsf.edu.

Contact: sergio.baranzini@ucsf.edu

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Data lead to information, and information leads to knowledge
(Ackoff, 1989). Vast amounts of data are being produced at a
breathtaking pace (Reinsel et al., 2018), and this explosion in the
amount of generated data is causing the number and size of data-
bases and repositories to increase exponentially. In the biomedical
domain, this big data problem gets further compounded by the
resulting compartmentalization of data resources according to spe-
cialty, likely driven by the enormous biological complexity underly-
ing human physiology (Fig. 1).

Even where data and factual knowledge are stored in public
repositories, their access and interpretation are still limited by phys-
ical, technical and thematic compartmentalization, making it diffi-
cult if not impossible for medical professionals to utilize this body of
information and connect the dots to facilitate the emergence of
knowledge.

Given the complexity of existing relationships among different
biomedical fields, graph databases have recently gained popularity
as a practical solution to integrate such disparate sources of infor-
mation. Knowledge graphs with biomedical content have been
developed using a variety of strategies, content and target applica-
tions (Fecho et al., 2021; Mattingly et al., 2006; Santos et al., 2022).

The scalable precision medicine open knowledge engine
(SPOKE) is a knowledge graph that connects information from 41
specialized databases, structured as 21 different node types and 55
edge types, ranging from molecular and cellular biology to pharma-
cology and clinical practice. SPOKE was conceived with the philoso-
phy that if relevant information is connected, it can result in the
emergence of knowledge, and hence provide insights into the under-
standing of diseases, discovering of drugs and proactively improving
personal health.

2 Materials and methods

2.1 Construction and enrichment of SPOKE
SPOKE currently uses 41 different data sources to construct the
knowledge graph (Table 1) although new databases are being added
continually. To construct SPOKE, a script downloads and processes
each data source on a weekly basis. (See Supplementary material for
a detailed description of databases and modeling.)

Organisms: Organisms in SPOKE are identified by their NCBI
Taxonomy ID (Schoch et al., 2020). Species of interest are

determined by several different sources: bacterial information from
KEGG (Kanehisa and Goto, 2000) and MetaCyc (Caspi et al., 2016)
and pathogenic species from PathoPhenoDB (Kafkas et al., 2019).

Proteins: The source for all protein information in SPOKE is
UniProt (Pundir et al., 2017). Both SwissProt (reviewed) and
TrEMBL (unreviewed) proteins are retrieved for all of the leaf
Organisms.

In addition to Protein-cleavesto-Protein edges, we also incorporate
data from several different sources to create Protein-interacts-Protein
edges. For human proteins, the primary source for this information is
STRING (Szklarczyk et al., 2019). In addition, all IntAct (Orchard et al.,
2014) protein–protein interactions are retrieved for all proteins in
SPOKE.

Finally, Protein nodes are linked to the Organism node (repre-
senting the species for that Protein) by creating Organism-encodes-
Protein edges. These edges are created from the NCBI Taxonomy ID
that is associated with the protein information loaded from UniProt.

Genes: Human gene information is imported from NCBI Gene
(Maglott et al., 2011). For human genes, the gene is linked to the
encoded protein using Gene-encodes-Protein edges by using the
UniProt gene information described above.

Diseases: SPOKE uses the Human Disease Ontology (Schriml
et al., 2012) as the primary identifier for Disease. The disease
ontology information is read from the latest OBO file, downloaded
weekly from https://github.com/DiseaseOntology/HumanDisease
Ontology and, in addition to creating the Disease nodes, we also cre-
ate the standard ontology links Disease-isa-Disease. The DISEASES
database (Pletscher-Frankild et al., 2015) is downloaded and parsed
to provide Disease-associates-Gene edges, which include the sources,
scores and confidence values from the DISEASES database as edge
attributes. In addition to information from the DISEASES database,
both OMIM (Amberger et al., 2015, 2019) and the GWAS Catalog
(Buniello et al., 2019) are used to provide Disease-associates-Gene
edges. Furthermore, the GWAS Catalog uses the Experimental Factor
Ontology (Malone et al., 2010) to encode disease information. The
GWAS lead variant P-value is added to the edge as a property.

In addition to Disease-associates-Gene edges, two more disease-
related edges are included in the core: Organisms-causes-Disease
and Disease-resembles-Disease. To create Organisms-causes-Disease
edges, data from PathoPhenoDB (Kafkas et al., 2019) are imported,
which links human pathogens to the associated disease. Disease-
resembles-Disease edges are based on the co-occurrence of disease
terms (based on MeSH) in PubMed. Co-occurrence is scored based
on Fisher’s exact test to provide both odds ratios and P-values,
which are stored as edge properties along with the number papers
that have both terms and the enrichment (measured as the number
of papers with both terms over expected number based on a random
distribution).

Compounds: For compound information, we chose to import
ChEMBL (Mendez et al., 2019). In addition, DrugBank (Wishart
et al., 2018) is used to include compounds that might not be present
in ChEMBL. We also add Compound-binds-Protein edges from
ChEMBL as well as BindingDB (Chen et al., 2001).

ChEMBL and DrugCentral (Avram et al., 2021; Ursu et al., 2017)
both provide information about the disease targets of drugs. Disease
information is stored by ChEMBL using the MeSH identifier.

Finally, we import data from the Connectivity Map project
(Subramanian et al., 2017) which provides information linking per-
turbagens, including compounds and genes, to the regulatory effects
on genes. In order to create the edges, we process the L1000 data to
derive consensus signatures following the method outlined in
Himmelstein et al. (2017).

As we continue to evaluate various databases that contain bio-
logical or biomedical data of interest, we integrate databases into
SPOKE that augment the core with useful information but do not
significantly introduce entire new ways of looking at SPOKE. Five
examples of this include adding Gene Ontology (Ashburner et al.,
2000) annotations for CellularComponent, MolecularFunction and
BiologicalProcess; ProteinDomain and ProteinFamily from PFAM
(Finn et al., 2014); the Uberon ontology (Mungall et al., 2012) for
Anatomy and CellTypes from the Human Protein Atlas (Thul and
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Fig. 1. Hierarchical organization of biological complexity. Biomedical information

is largely compartmentalized according to disciplines. Integration of information

may lead to the emergence of knowledge
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Lindskog, 2018); PharmacologicClass of Compounds from
DrugCentral (Avram et al., 2021); and Symptom from MeSH terms.

The InterPro database (Blum et al., 2021) is used to provide
ProteinDomain-partof-Protein edges, which provides the linkage be-
tween ProteinDomain and the SPOKE core. The ProtCID database
(Xu and Dunbrack, 2020) provides information about known inter-
actions between protein domains as well as between protein
domains and compounds.

Finally, the Bgee (Bastian et al., 2021) resource is used to deter-
mine differential expression of genes across tissues. This information
is used to encode Anatomy-upregulates-Gene, and Anatomy-
downregulates-Gene edges.

Pathways: Initially, we imported human pathway information
from WikiPathways (Martens et al., 2021) and Pathway Commons
(Cerami et al., 2011). These resources were used to add a Pathway
node type, which is connected to Gene with Gene-participates-
Pathway edges.

To import metabolic pathways, we read data from KEGG
(Kanehisa and Goto, 2000), MetaCyc (Caspi et al., 2016) and
PATRIC (Wattam et al., 2014). We use a reaction-centric model,
adding a Reaction node that links to the metabolites with Reaction-
consumes-Compound and Reaction-produces-Compound edges. A
key part of the model is the addition of an EC node that links to the
Reaction through an EC-catalyzes-Reaction edge. The EC node also
links to the Proteins that have that EC using Protein-has-EC edges.

Food: The current version of SPOKE contains two food data-
bases: FooDB (Scalbert et al., 2011) and the Australian Food
Composition Database from Food Standards Australia New
Zealand. Two edges are derived from the databases, Food-contains-
Compound and Food-contains-Nutrient. We are currently integrat-
ing the FoodOn (Dooley et al., 2018), an ontology of foods that we
will use to map foods from the various databases into a consistent
ontology.

2.2 REST API
All of the nodes and edges discussed above are accessible through
the SPOKE REST API. The API was designed primarily to support

the Neighborhood Explorer graphical user interface (Fig. 3) but also
provides reasonable access to the SPOKE database for other poten-
tial uses. The API can be roughly divided into three different parts:
calls that return meta-information, calls that return information
about nodes and calls that return networks. All API calls begin with
the prefix: https://spoke.rbvi.ucsf.edu/api/v1/. The API is docu-
mented more fully at https://spoke.rbvi.ucsf.edu/swagger/. The
metagraph call returns a cytoscape.js (Franz et al., 2016) formatted
JSON file that reflects the current SPOKE metagraph. The SPOKE
call for getting information about nodes is the full-text search call
search. The search call takes two arguments: a node type and a
query term. This call uses the Neo4j full-text capability to quickly
return a set of matching nodes of the indicated type that match that
query, where the query is a lucene-formatted (Białecki et al., 2012)
query.

The SPOKE network calls are more complicated to allow more
complicated filters and cutoffs. The three network calls all return
cytoscape.js JSON networks. The sea call takes a SMILES
(Weininger, 1988) string or a ZINC (Irwin and Shoichet, 2005)
identifier as an argument and returns the SEA (Keiser et al., 2007)
network. The neighborhood call is similar to the node call and takes
node_type, attribute and value arguments. See https://spoke.rbvi.
ucsf.edu/swagger/ for more information. The final network call is
the expand call, which takes as its input a node type and an internal
node ID to expand along with a list of existing node identifiers.

3 Results

SPOKE is a knowledge graph connecting information from 41 bio-
medical databases. The current release contains more than
27 056 367 nodes of 21 different types (Table 1) and 53 264 489
edges of 55 types (Supplementary Table S1). SPOKE uses 11 differ-
ent ontologies as a framework to organize and connect data in a se-
mantically meaningful manner.

SPOKE strategically collects content from a range of biomedical
data sources (i.e. providers of facts or established knowledge). In
order to enhance its relevance to human health, SPOKE focuses on

Table 1. SPOKE nodes

Node Label Description Count Source

1 Anatomy Tissue (from UBERON) 15 239 http://obophenotype.github.io/uberon/

2 AnatomyCellType Intermediate node built by

combining cell type and

anatomy

102 N/A

3 BiologicalProcess From Gene Ontolology 13 343 http://geneontology.org

4 CellType From Gene Ontolology 54 https://www.ebi.ac.uk/ols/ontologies/cl

5 CellularComponent From Gene Ontolology 1722 http://geneontology.org

6 Compound pharmacological or metabolic

compound

2 112 091 https://www.ebi.ac.uk/chembl/

7 Disease Disease 10 932 https://disease-ontology.org

8 EC Enzymatic activity 8 287 https://iubmb.qmul.ac.uk/enzyme/

9 Food Food 992 https://foodon.org

10 Gene Gene (Entrez) 20 086 https://www.ncbi.nlm.nih.gov/gene

11 MolecularFunction FROM gene ontolology 3488 http://geneontology.org

12 Nutrient Nutrient 39 https://www.ebi.ac.uk/chembl/

13 Organism Organism (NCBI taxonomy) 10 030 https://www.ncbi.nlm.nih.gov/taxonomy

14 Pathway Biological pathway 3454 https://reactome.org

15 PharmacologicClass Pharmacological class 577 https://www.ebi.ac.uk/chembl/

16 Protein Protein (UniProt) 24 805 918 https://www.uniprot.org

17 ProteinDomain Protein domain (Pfam) 19 178 https://pfam.xfam.org

18 ProteinFamily Protein family (Pfam) 645 https://pfam.xfam.org

19 Reaction Metabolic reaction (KEGG or

Metacyc)

22 370 https://www.kegg.jp kj https://metacyc.org

20 SideEffect Compound side effect (SIDER) 6061 http://sideeffects.embl.de

21 Symptom Symptom (MeSH) 1759 https://www.ncbi.nlm.nih.gov/mesh/

Total 27 056 367
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experimentally determined information. Thus, computational pre-
dictions and text mining from the literature are not currently priori-
tized. SPOKE is implemented as a Neo4j Community instance and

built weekly from scratch by a series of custom python scripts which
download each resource, check for integrity and completeness, and

then create a ‘root table’ of nodes and edges. Finally, a Cypher script
is used to upload the root table into Neo4j (Supplementary Fig. S1).
Graph queries are translated by a REST API and users can submit

searches directly via the API or via the graphical user interface
(Neighborhood Explorer).

The SPOKE metagraph (Fig. 2) shows all node types connected
by biologically meaningful, semantic relationships. Both nodes and
edges retain source properties that are exposed to the user and in-

clude provenance, context, descriptions, etc. If available, additional
details are encoded as edge properties, such as association P-value

and odds ratio (or Beta value) for an associated genetic variant, etc.

3.1 Ontologies
Ontologies are used to provide hierarchical structure to the graph,

which enables anchoring of additional concepts and facilitates logic-
al navigation. SPOKE also uses ontologies to mark up the datasets
coming into the knowledge graph so that the data can be linked con-

sistently across all other datasets. Whenever practical, SPOKE also
adheres to the Biolink model. While not strictly an ontology, the

Biolink model aims at standardizing the types and relational struc-
tures present in biomedical knowledge graphs.

3.2 Identifiers
For each type of node in SPOKE, a unique identifier must be chosen.
While several different identifiers can be found for the same concept,
one identification is selected as primary (SPOKE uses Ensembl). To

enable cross-referencing, additional identifiers available for a given
concept are kept as node properties.

3.3 Modeling
To preserve and make optimal use of available information, SPOKE
considers genes and proteins as separate concepts (genes and tran-

scripts remain unified). This distinction is particularly useful to de-
scribe protein isoforms, to properly map disease associations to
genes, to accurately describe gene–gene regulations, and to distin-

guish drug–protein interactions from drug–gene (transcript) regula-
tion. In most cases, data are downloaded and integrated ‘as is’, thus
no modification to the source data is introduced.

3.4 Database download and update scripts
SPOKE is supported by a collection of Python scripts that identify
the URL for the resource, downloads data tables, matches identifiers
and creates nodes and edges between corresponding concepts.

3.5 Graphical user interface: the SPOKE Neighborhood

Explorer
SPOKE can be accessed via the Neighborhood Explorer (Fig. 3). The
SPOKE Neighborhood Explorer is a simple web interface (https://
SPOKE.rbvi.ucsf.edu) that allows a researcher to query a given
drug, disease, gene or protein and returns its neighbors in graph
space—with precise controls (i.e. options) over the kind of nodes
and edges that will be retrieved to the user, and a mouse-over func-
tion that displays the node/edge metadata (including its proven-
ance). To preserve integrity of the original databases and prevent
redistribution of content, SPOKE is not available as a bulk
download.

3.6 Uses for SPOKE
Drug discovery capabilities: Compounds with therapeutic evidence
(FDA-approved) or under experimentation, can be directly searched
via their ChEMBL identifier or by typing in free text. Relationships to
diseases (ChEMBL and DrugCentral), protein binding (ChEMBL and
bindingDB), side effects (SIDER) or gene regulation (LINCS L1000)
are available for selection (Fig. 4). Predicted binding to human proteins
[pre-computed by the SEA algorithm (Keiser et al., 2007)] can be
retrieved by entering the compound’s SMILES ID. Starting from a
SPOKE search, advanced graph analytic and machine learning
approaches can be employed to use multi-node drug neighborhoods as
a ‘functional fingerprint’ to complement its molecular profile for drug
discovery or repurposing approaches.

Anatomy-driven searches: The class hierarchy view among ana-
tomical terms can be explored by expanding any term using the
subsumption relationships (Anatomy-isa-Anatomy, UBERON).

Severe acute respiratory
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CAPTOPRIL
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Fig. 3. A view of the SPOKE Neighborhood explorer. The top panel shows the con-

trols that allow a user to select nodes/edges for expansion as well as other key

parameters. The bottom panel shows an example of the graph neighbors of the

SARS-CoV-2 Spike protein (light blue), which includes three human genes (blue)

and the proteins they encode (green). One such protein (ACE2_HUMAN) acts as

the virus receptor in humans and has edges connecting it to three compounds (two

of them FDA-approved and one -ORE-100- in experimental phase)
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The edges Anatomy-partof-Anatomy describe relationships
between Anatomy nodes (also from Uberon) indicating physical in-
clusion, for example, ‘brain’ is a part of ‘central nervous system’.

Nominal or enriched gene expression information by each
anatomy can be retrieved by Anatomy-expresses-gene or
anatomy-upregulates-gene edges (Bgee). Cell types are connected
to anatomies via intermediate AnatomyCellType nodes and
AnatomyCellType-isin-Celltype edges. This modeling strategy
was implemented to disambiguate cases in which the same cell
type is found in different organs but they express different genes
in each case [e.g. squamous epithelial cells can be found in several
anatomies and their expressed genes/protein profiles can be dif-
ferent (Fig. 5)].

Food-driven searches: With the incorporation of FooDB and
Australian Food Composition Database, thousands of edges connect
chemicals to common foods. When available, a numeric quantity
describes the amount as an edge property. This is useful when con-
necting foods with metabolic reactions or components of the gut
microbiota. Indeed, a SPOKE search can be initiated with any avail-
able foods and use a combination of Extend and Options to display
a complete picture of the role of its neighborhood. For example, a
user can start a search with the term ‘(arabica) coffee’ and bring the
compound caffeine as one of its components (Fig. 6). An unrestrict-
ed extension of caffeine brings nodes of different types, including
proteins (Adenosine receptors, acetylcholinesterase and monoamine
oxidases) known to bind this compound. As some of them are
enzymes (MAO-A and MAO-B), a connection to the corresponding
E.C. (Monoamineoxidase) can be retrieved. In addition, protein
domains (light blue) from each protein can be retrieved. Caffeine is
also connected to the gene TLR4 (by an edge
Compound_upregulates_gene), as reported by LINCS L1000.
Additional information is available for caffeine, such as its pharma-
cological class (xantines), associated side effects (e.g. feeling jittery)
and disease contraindications (e.g. epilepsy). In addition, caffeine is
linked to a series of metabolic reactions (red nodes), some of which
are endogenous (monooxygenase and Cytochrome P450) and some
are bacterial (e.g. a demethylase and a dehydrogenase) correspond-
ing to Pseudomonas putida (Yu et al., 2009). Thus, SPOKE was able
to reconstruct a large body of knowledge by linking information
deposited in multiple databases (Fig. 6).

Disease-driven searches: Diseases can be explored by entering a
DOID or text and selecting any of the available Options, which in-
clude relationships to genes, symptoms, indications, similarity and
anatomy (in addition to exploring the disease ontology). For ex-
ample, it is possible to search for Alzheimer’s disease (AD, DOID:
10652), and retrieve just its symptoms (PubMed) and all sub-types

of the disease described in the DO (AD1, AD2, etc.) (Fig. 7). An ex-
tension to this search can be performed to bring genes associated
with each disease subtype (GWAS Catalog, OMIM and DISEASES),
the proteins these genes encode (NCBI Gene) and their domains and
families (PFAM). Entire classes of diseases can be explored at once,

Fig. 4. Available relationships for compounds. Example of user options to select dif-

ferent relationships for compounds. Compound binds protein (BINDS_CbP) reflects

molecular interactions obtained from ChEMBL and BINDINGdb. Compound

causes side effect (CAUSES_CcSE) relationships are retrieved from SIDER.

Compound contraindicates disease (CONTRAINDICATES_CcD) and Compound

treats disease relationships are obtained from ChEMBL. Compound downregulates

gene (DOWNREGULATES_CdG) and Compound upregulates gene

(UPREGULATES_CuG) are obtained from LINCS1000
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Fig. 6. A search for Coffee reveals molecular, pharmacological and metabolic path-

ways of caffeine. A multi-step search for coffee can provide a deep understanding of

its relationship to human metabolism. In this example, Arabica coffee (food) con-

tains caffeine (compound), which, together with theophylline, is a xanthine

(pharmacological class). In addition, caffeine binds two adenosine receptors

(AA2AR and AA2BR), encoded by the genes ADORA2A and ADORA2B, acetyl-

cholinesterase (ACES) and monoamine oxydase A (ACFA) and B (ACFB). Caffeine

also binds the protein domain Ryanodine receptor, upregulates the gene TLR4,

causes a feeling jittery side effect and is contraindicated in epilepsy. In the left-hand

side of the figure, two metabolic reactions that consume caffeine are depicted. A

mono-oxygenase catalytic activity is denoted for cytochrome P450 complex in

humans, and a methylxanthine demethylase activity in Pseudomonas putida. A de-

hydrogenase activity is carried out by enzymes in Pseudomonas sp. CBB1
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by leveraging the disease ontology. For example, all Mendelian or
metabolic diseases can be retrieved in a single query. For a given meta-
bolic disease, it is possible to explore relationships to gene, protein, en-
zymatic activity, all the way down to the metabolic reaction affected
by the gene defect. This strategy is particularly useful when searching
for compounds that can reverse the damage either by reducing degrad-
ation or by increasing production of the affected metabolite.

4 Discussion

Knowledge can be considered an emergent property of the intercon-
nected web of trusted information and known facts. The space of
the ‘unknown knowns’ is growing fast and remains vastly underex-
plored. Concretely, in order to effectively mine them, we must ‘con-
nect the dots’ from several information sources. We argue that when
heterogeneous networks are connected at a massive scale, new
knowledge can be extracted as an emergent property of the network.
In this article, we present SPOKE, a large biomedical knowledge
graph that amalgamates data and information from a large spectrum
of databases ranging from molecular to physiological processes.

SPOKE has been used for a variety of biomedical applications
including drug repurposing (Himmelstein and Baranzini, 2015), disease
prediction and interpretation of transcriptomic data (Himmelstein and
Baranzini, 2015), among others. More recently, we developed an algo-
rithm to embed electronic health records onto SPOKE, which, when
combined with machine learning techniques, enables a wide range of
applications relevant to precision medicine (Nelson et al., 2019, 2022).
This approach uses an original embedding method based on the Page
rank algorithm that enables the creation of concept-specific vectors
(PSEV) trained in millions of de-identified electronic health records.
These vectors describe cohorts of patients that share one specific con-
cept (e.g. patients treated with the drug Metformin or patients with
tremor as a symptom). Each of these embeddings represents the im-
portance of each node in SPOKE for that cohort, based on the training
data, and can later be combined to represent the status of a given pa-
tient at a particular point in time. For details, see Nelson et al. (2019).
This approach has been successfully implemented to predict a diagnosis
of multiple sclerosis with up to 83% accuracy 3 years before the first
disease code was found in the EHR (Nelson et al., 2022). A similar ap-
proach is now being used to predict diagnosis of other chronic diseases,
such as Parkinson’s and Alzheimer.

A number of biomedical knowledge graphs exist, but without
clear standards for their representation and modeling, a wide variety
of strategies have been implemented. Naturally, such knowledge
graphs have been difficult to create, as they require deep expertise in

a variety of domains. In particular, biomedicine has been slow to
adopt this potentially transformative approach, in part due to the
complexity of the underlying information. While some focus on ex-
perimentally determined information, others include primary data,
literature mining and predicted relationships. In addition, these
resources can be implemented as property graphs or using RDF (tri-
ples) representation (DataCommons https://www.datacommons.
org/), which largely determines the range of applications they can be
used for. Finally, some biomedical graphs are built using semi-
automated methods (Rossanez et al., 2020; Santos et al., 2022), and
others like SPOKE, Robokop (Fecho et al., 2021) and the compara-
tive toxicogenomics database (Mattingly et al., 2006), CTD, require
extensive manual curation (Table 2 illustrates key features of some
of the most relevant biomedical graphs available).

The Biomedical Data Translator project (Translator, for short)
(https://ncats.nih.gov/translator) is a novel and ambitious undertak-
ing by the National Institutes of Health’s National Center for
Advancing Translational Sciences involving a large and collabora-
tive cadre of scientists from a variety of scientific domains including
semantic representation, computer science and biomedical experts.
The Translator project aims at developing a comprehensive, rela-
tional, N-dimensional Biomedical Data Translator that integrates
multiple types of existing data sources, including objective signs and
symptoms of disease, drug effects and intervening types of biological
data relevant to understanding pathophysiology. SPOKE is one of
the knowledge providers of the Translator project.

The National Science Foundation’s Convergence Accelerator
Program catapulted the development of SPOKE and other open
knowledge graphs in the content of track A, which started in 2019.
The program prompted a 10� growth in SPOKE in terms of number
of nodes, edges and types of information incorporated. Current
applications in development include graph traversal, embeddings
and drug repurposing efforts, among others.

Machine and deep learning models such as neural networks have
traditionally been considered ‘black boxes’, capable of delivering pre-
dictions, but in and of themselves, no new knowledge. This perceived
limitation has slowed down their adoption in a range of chemical and
biological contexts, under the sensible argument that a technique a
scientist, clinician or engineer cannot understand will in turn provide
no guarantee of correctness in a true discovery context. Similarly, bio-
medicine, and human health in general, has been a ‘black box’ field
for predictions and prognoses. In this context, SPOKE can be used to
predict biomedical outcomes in a biologically meaningful manner
thus representing ‘clear box’ (i.e. explainable) models. With SPOKE,
the paradigm of knowledge graphs—amply proven in Search—is
ready to be tested and ultimately applied in biomedicine.
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Fig. 7. Main types of Alzheimer’s disease and their relationships to symptoms,
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depicted, each with its corresponding genetic association. Type 1 is related to vari-

ation/mutation in MPO and APP, Type 2 is related to APOE, Type 3 is related to

APOE and PSEN1, and Type 4 is related to PSEN2 (blue). The corresponding pro-

teins encoded by those genes are also depicted (teal). The enzymatic proteolysis of
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Table 2. Comparison of biomedical knowledge graphs

SPOKE CGK ROBOKOP ARAX KeyGEN CTD

User friendly þþþ þ þþ þ þ þþþ
Experimental info

rich

þþþ þ þ þ n/a þþþ

Literature rich þ þþþ þþ þþþ ONLY þþ
Ontologies þþþ þ þþ þþ þþ þ
Food info YES YES NO YES n/a NO

Metabolic info YES NO NO n/a NO

Microbiome info YES NO NO n/a NO

Full analytics

workbench

NO YES NO YES NO NO

Automatically

generated

NO NO NO NO YES NO

Installation needed NO YES YES NO NO NO
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