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Neuronal networks are the standard heuristic model today for describing brain activity associated with
animal behavior. Recent studies have revealed an extensive role for a completely distinct layer of
networked activities in the brain—the gene regulatory network (GRN)—that orchestrates expression
levels of hundreds to thousands of genes in a behavior-related manner. We examine emerging insights
into the relationships between these two types of networks and discuss their interplay in spatial as well as
temporal dimensions, across multiple scales of organization. We discuss properties expected of behavior-
related GRNs by drawing inspiration from the rich literature on GRNs related to animal development,
comparing and contrasting these two broad classes of GRNs as they relate to their respective phenotypic
manifestations. Developmental GRNs also represent a third layer of network biology, playing out over a
third timescale, which is believed to play a crucial mediatory role between neuronal networks and behav-
ioral GRNs. We end with a special emphasis on social behavior, discuss whether unique GRN organization
and cis-regulatory architecture underlies this special class of behavior, and review literature that suggests
an affirmative answer.

behavior | network | development

Animal behavior arises in large part from the co-
ordinated activities of cells in the nervous system. It is
common to model this activity with neuronal networks
[NNs (1–4)], which seek to describe how circuits of
neurons transmitting electrochemical signals from
one neuron to the next control sensory, integrative,
and motor functions of an organism (5). NNs provide
quantitative representations of the signal processing
activities that integrate perceptions of environmen-
tal stimuli with internal physiological states to pro-
duce the neuronal signals that orchestrate adaptive
behavior (6).

A rich body of genetic and, more recently, geno-
mic studies have revealed that behavior is also
associated with the coordinated activities of genes
that operate in brain cells. Many studies have found
significant, predictable, and specific changes in brain
gene expression profiles associated with behavioral
responses to particular environmental stimuli (7–14).
These findings suggest that a second layer of network
biology—that of gene regulatory networks (GRNs)—
also underlies behavior. Expression of thousands of
genes in the genome must be coordinated in order
to generate the gene expression profiles that establish
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cell types, states, and functions, and such coordination is also
necessary to induce the characteristic expression changes associ-
ated with behavior. Orchestration of gene expression within a cell
is achieved by regulatory interactions through which genes influ-
ence one another’s activity, often in response to extracellular sig-
nals, jointly establishing the GRN. A GRN is a collection of
regulatory relationships among genes that helps us understand
how “input” signals and cellular context map to “output” gene
expression levels. Applied to the brain, a GRN is thus a natural
construct to help explain the observed behavior-associated
changes in gene expression profiles in mechanistic terms. It is
worth noting that the GRN in our discussion refers to the regula-
tory relationships and interactions operative within the cell, and
not to the statistical relationships determined as part of GRN re-
construction efforts (8).

Which gene regulatory interactions most impact the expres-
sion changes associated with a particular behavior? These
interactions comprise a subnetwork of the genome-wide GRN
that we will refer to as a “behavior-associated GRN” (“bGRN”).
Models of bGRNs have only recently been developed (8), and
despite their usefulness, many questions remain unanswered re-
garding their composition and structural/functional characteris-
tics, as well as their relationship to NNs.

Here, we highlight emerging concepts and open questions
related to bGRNs. We argue that integrating both networks—NNs
and bGRNs—holds great potential for a better understanding of
how neurons and the genes expressed within them together reg-
ulate organismal behavior and channel its evolution (6, 15). While
bGRNs are intracellular networks whose direct “outputs” are
changes in gene expression, these intracellular changes are influ-
enced by behavioral context and in turn feed back into NNs, with
functional consequences on behavior. We also outline some paths
for future research, with a special focus on social behavior, a par-
ticularly active area of research on bGRNs.

To guide our exploration of bGRNs, we draw inspiration from
the field of developmental biology, because metazoan GRNs are
perhaps best understood in the context of development (16, 17).
Developmental biology has already produced mature descrip-
tions and theories of developmental GRNs (“dGRNs”) and also
have inspired other researchers studying brain and behavior (18,
19). Moreover, there are deep connections between develop-
ment and behavior, as we discuss below, and this also provides
a strong framework for comparative analysis. We thus use dGRNs
as a point of comparison and contrast for bGRNs. Even if we find,
upon pushing the comparison further, that dGRNs are in fact a
poor model for understanding behavioral regulation, the rich lit-
erature on dGRNs will have allowed us to frame baseline expec-
tations about bGRN characteristics, and identifying departures
from this baseline will help us appreciate unique aspects of be-
havioral gene regulation. In referring to developmental studies,
we focus on the development of new cell types from precursor
cells (17, 20), rather than organ development and other processes
involving groups of cells. We do not claim to describe or compare
all of the many ways in which behavior and development have
been studied; rather, we comment on salient properties vis-à-vis
their associated networks and control mechanisms.

GRNs in Development and Behavior
Cellular States in Development and Behavior. An important con-
cept for mechanistic studies of development is the “cellular state”
(21, 22). Development of the various cell types in the metazoan body
can be seen as a temporal succession of cellular state transitions,

operating in parallel on multiple cell lineages in the organism. Gene
expression profiles (measured as genome-wide transcript profiles or
“transcriptomes”) have emerged as a convenient yet powerful sur-
rogate for cell states. GRNs, which control these profiles, are the
underlying systems that drive cell state transitions (23). For instance, if
a set of genes change expression as a cell transitions from one state
to another, the GRNmay explain those changes as the effects of one
or more transcription factors (TFs) that were activated or deactivated
in the transition (17). In fact, GRNs not only explain state transitions,
they also underlie the very existence of stable transcriptomic profiles
representing cell states (24, 25) (Fig. 1A).

Organisms also show transitions from one distinct behavior to
another. In some cases, each behavior is performed briefly, while in
other cases each behavior is performed for a relatively long time
period, giving rise to “behavioral states” (7). In species living in
complex societies with a division of labor, social dominance hier-
archies, alternative reproductive tactics, and other forms of be-
havioral plasticity, some individuals perform the same set of
behaviors repeatedly, sometimes for days or longer, thus exhibiting
extreme behavioral states (26). Gene expression profiles in specific
brain regions or even whole brains have proven useful as surrogates
for behavioral states (Fig. 1A); in some cases, the correspondence
between brain gene expression profile and behavior is strong
enough to use the former to predict the latter (7, 27). This is similar
to how gene expression profiles serve as reliable signatures of
developmental stages and corresponding cellular states.

There are similarities and differences in the delicate balance
between the stability and flexibility (openness to transitions) of
states in both development and behavior. Transcriptomic studies
have revealed not only that behavioral stimuli change brain gene
expression profiles in brain tissues in a predictable and re-
producible manner, but also that the new expression profile is
stable, commensurate with the stability of the behavioral state. In
other words, the brain or brain region being profiled transitions
from one stable molecular state to another in response to the
stimulus, and a sufficient number of cells apparently must un-
dergo the same or similar cell state transitions so that their mea-
sured aggregate expression profiles at the tissue level still reflect
this transition. This speculation suggests that individual cells in the
brain switch states in a coordinated manner—akin to cellular state
transitions during development. However, behaviors are in gen-
eral more ephemeral than typical cellular states in development,
so we would expect that the transcriptomic correlates of behavior
are correspondingly more fluid (28) than those of cells in a de-
velopmental context. Both dGRNs and bGRNs govern cell state
dynamics, but it is plausible that the dynamical features of bGRNs
are more skewed toward flexibility.

A second point of comparison between developmental and
behavioral systems with implications for underlying GRNs lies in
the multiscale organization of states and their coordinated tran-
sitions. Development is the determination and differentiation of
many different cell types through time. Each cell type emerges by
a transition from a precursor cell type, with multiple transitions
occurring in parallel across space that are coordinated by local as
well as longer-range signaling. Likewise, transcriptomic state
transitions associated with behavior are manifested in multiple
brain regions simultaneously (29), presumably coordinated by
neuronal connections as well as humoral cell–cell communication
involving hormones and neuromodulators. We therefore expect
to see common themes shared between development and be-
havior regarding how GRNs that operate in different spatial lo-
cations coordinate their activities.
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Fig. 1. Transcriptomic states, stability, and relation to gene regulatory network (GRN) connectivity. (A) GRN along with cellular environment
determines the gene expression profiles (transcriptomic states) of cells, which in turn are surrogates of cellular states. Cellular states that are
stable but flexible transitions between states are also possible, also under the influence of GRN. Cellular states in the brain have been found to be
strongly predictive of behavioral states. (B) Landscape depicting stability of transcriptomic states, with the x–y axes representing all possible
states (state space) and the z axis representing their stability. Valleys in this transcriptomic landscape represent regions of stability, or attractors.
Stable states correspond to attractors of the landscape. (C) GRN connection patterns shape stability in the transcriptomic landscape. GRNs with
more edges between transcription factors (TFs) and feedback loops exhibit deep valleys (more stable attractors) in the landscape, while fewer
TF–TF edges in a GRN are associated with shallow valleys. (D) Comparison of TF–TF connectivity between a behavioral GRN (bGRN) in mouse (29)
and a developmental GRN (dGRN) in fruitfly (34). The two GRNs were reconstructed from genome-wide expression data in the respective studies
and consist of TF–gene edges. For each TF, we counted the number of its target genes that encode TFs and calculated the ratio of this count and
the total number of target genes of that TF (since the GRN was constructed separately in each species, with different criteria for defining edges).
We normalized this ratio further by the overall TF-to-gene count ratio in the species. Shown is the histogram of (normalized) TF–TF edge
frequencies in each species, revealing that a TF typically had more TF targets in the dGRN relative to the bGRN.
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Gene Expression Changes during Development and Behavior.

Changes in brain gene expression associated with behavioral
changes are generally of modest magnitudes, with studies
reporting statistically significant changes to be twofold or less (29).
As a point of contrast, more dramatic expression changes are seen
in early development (16, 17, 30), where transcriptomes first es-
tablish cell lineages that will give rise to a vast diversity of tissues
of the body. A simple explanation of this contrast may be differ-
ences in cellular heterogeneity between tissues analyzed—the
early embryo will give rise to tissues ranging from gonads to brain,
whereas in behavioral studies cells of a smaller range of similar
lineages are being studied. Additionally, most behavioral tran-
scriptomics studies have so far relied on “bulk” (whole-brain re-
gion or even whole brain) rather than single-cell expression
measurements, and the relatively modest expression changes
notedmay be the consequence of only a subset of cells in the bulk
sample participating in the change. On the other hand, de-
velopmental studies often make use of single-cell sequencing (31)
and/or spatial expression profiles such as those based on in situ
hybridization (32), allowing construction of higher-resolution
transcriptomic maps that resolve cellular heterogeneity.

However, there may be a biological reason for observed dif-
ferences in the magnitude of gene expression differences be-
tween early development and behavior, related to differences in
the persistence of behavioral and developmental states. Behav-
ioral changes, especially when associated with an active stimulus,
are generally more plastic than development; animals can rapidly
transition from one behavior to a variety of other behaviors,
depending on the social and ecological context. This stands in
stark contrast to the typically unidirectional nature of de-
velopmental progression, which ultimately establishes different
cell types with distinct expression profiles. Different behaviors are
seen to induce different directions of change in brain gene ex-
pression profiles (10), and by extrapolation we expect that the
number of distinct behaviorally related transcriptomic changes
exceeds the diversity of paths normally taken from any given
developmental state. It is reasonable to speculate that the less
pronounced transcriptomic changes seen in behavioral contexts
(compared to those noted in early development) are related to
this greater plasticity. If true, these points of contrast between
developmental and behavioral changes in expression would
suggest the existence of corresponding differences in regulatory
mechanisms at multiple levels. These include transcriptional gene
regulation in the GRNs (trans- and cis-elements), the architecture
of gene regulatory circuits (feedback loops) within the bGRNs or
dGRNS, and the control of GRN dynamics exerted by cell–cell
interactions in the respective cell communities.

Differences between bGRNs and dGRNs. The above analyses of
similarities and differences between development and behavior in
terms of cellular states and gene expression set the stage to
compare their underlying GRNs directly. One possible difference
between the two types of GRNs is that dGRNs have a greater
connectivity (frequency of regulatory edges) among TFs than do
bGRNs. To understand this, let us consider the space of all pos-
sible transcriptomic states achievable by a system (the cell), with
transitions among states (gene expression profiles) being de-
termined by the GRN. Most of these states are unstable because
they violate gene regulatory interactions. However, a distinct
subset of them satisfy all regulatory interactions, are stable (robust
to molecular noise), and can perform important biological roles
such as maintaining cell type identity. Such stable transcriptomic

states are called the “attractors” of the space (24, 25). The term
“attractor,” borrowed from dynamical systems theory, refers to a
state toward which a system tends to evolve and revert to if per-
turbed (e.g., due to fluctuations arising from gene expression
noise). Attractors may be conceptualized as valleys in a landscape
that depicts the stability of all possible transcriptomic states (Fig.
1B). A GRN with many TF–TF regulatory interactions is likely to
have feedback loops, which are known to result in a transcriptomic
landscape characterized by many “deep” attractors from which
there is no escape other than experimentally induced cell type
reprogramming (33). By contrast, a paucity of TF–TF regulatory
interactions and feedback loops in a GRN is expected to result in
more malleable gene expression profiles that can reversibly
transition into each other, depicted by shallow valleys in the
transcriptomic landscape (Fig. 1C). Characteristics of gene ex-
pression changes associated with the greater plasticity of behav-
ior, discussed above, thus suggest that bGRNs should have fewer
TF–TF regulatory interactions than dGRNs. We expect that the
continuing efforts at reconstructing genome-wide GRNs through
identification of trans- and cis-regulatory connections between all
gene loci will help to test this prediction.

Fig. 1D illustrates one way to test the above prediction, by
comparing a bGRN reconstructed from transcriptomic profiles of
behavioral states in mouse (29) and a dGRN reconstructed from
transcriptomic profiles associated with eye development in Dro-
sophila (34). This comparison, which provides support for the
prediction, is merely one suggestive example, guided largely by
the limited availability of GRNs at scale. Future tests will need to
account for the fact that GRN characteristics can differ depending
on the specific behavior and developmental process under study.

We noted above that a transcriptomic landscape with shallow
attractors enables frequent transitions between cellular states.
Shallow attractors are also associated with greater fluctuations in
gene expression, which translates to the prediction of more sto-
chastic gene expression in transcriptomic states associated with a
behavior. Similarly, experimental studies using single-cell tran-
scriptomics have revealed a greater dispersion in expression
during differentiation events (35, 36), when deep attractors rep-
resenting precursor cell types are destabilized and rendered
shallower to facilitate state transition (25). Future work utilizing
single-cell transcriptomics to analyze cells from the brain will help
us test this hypothesis regarding behavior-associated cell states.

bGRNs and dGRNs in Evolution. In addition to the above
mechanistic comparisons, an important insight into the parallels
between behavioral and developmental gene regulation comes
from evolutionary analysis. The rich literature on evolutionary
developmental biology (“evo-devo”) (16, 37) has revealed ge-
netic “toolkits” that have been deployed repeatedly in the in-
dependent evolutions of sometimes-parallel features of animal
morphology, and these toolkits have been traced to the level of
GRNs (17). Recent behavioral studies have undertaken in-
creasingly comprehensive cross-species comparisons at the tran-
scriptomic level and also have reported the existence of toolkits of
genes and gene modules underlying parallel behaviors (9, 38),
loosely analogous to developmental toolkits (16). dGRNs have
provided a systems-level construct at which similarities of de-
velopmental regulation emerge across great evolutionary spans
despite extensive sequence-level divergence (39, 40). Similarly,
bGRNs and associated coexpression modules provide glimpses
of shared mechanisms of behavior in different species even if such
evolutionary toolkits are not apparent at the individual gene level
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(9, 41). In addition, such comparisons can also give insights into
how entirely new behaviors might evolve. For example, analogous
to the redeployment (and sometimes tweaking) of toolkits or
dGRNs in the evolution of morphological novelties (42–44), a new
behavior’s appearance might be facilitated (in an appropriate
selective situation) by redeploying all or part of an existing bGRN
in a new time, neural context, or in response to a different stimulus
(19). Concepts and approaches developed in evo-devo for cross-
species comparisons of dGRNs are already proving useful for
similar cross-species comparisons of bGRNs (19).

Integrating GRNs and NNs: Multiscale Dynamics
The recognition of the bGRN as an important molecular substrate
of behavior raises exciting possibilities to consider the interplay of
the bGRN with the network most directly related to behavior—the
NN. Such interactions would integrate across two distinct levels of
biological networks, resulting in increased complexity of network
dynamics compared to either network alone. The NN is based on
physical connections among neurons, and the messages trans-
mitted through it may interface with the bGRN (45). For instance,
the bGRN operating within a neuron may respond to the synaptic
activity among the neurons in the NN (46), as well as hormones
and other secreted mediators that bind to its receptors, resulting
in changes in gene regulatory activity. In one study, the temporal
kinetics of neuronal firing was found to be intimately linked to
GRN activity in dorsal root ganglia neurons, suggesting that the
patterning of neuronal activity is interpreted by the GRN (47).
Similarly, in the mouse cortex, expression levels of a transcrip-
tional switch, the TF Er81, are directly correlated with firing
properties in a subtype of interneuron, and activation of these
interneurons in the context of learning modulates Er81 expression
(48). Conversely, the bGRN indirectly controls NN activity via
setting the production levels of neurotransmitter receptors, ion
channels, axon outgrowths, dendritic arborizations, and other
physico-chemical components of the NN (49–52). A case in point
is the highly conserved TF FoxP2, a component of bGRNs in the
basal ganglia song nucleus, Area X, that is associated with avian
song learning (53). Knockdown of FoxP2 is known to impact vocal
imitation and song variability. Mechanistic studies have shown
FoxP2 to regulate genes that contribute to neurite outgrowth and
NN formation (51), and to influence dopamine-modulated cortical
circuits (54) in the mouse brain. Similarly, in the Drosophila brain,
complex regulatory cascades of gene expression establish spe-
cific features of Tv1 neurons such as neurite morphology or neu-
rotransmitter identity (55). GRNs have also been shown to
constrain variability in neuron identity and function among similar
neurons despite substantial variation in the expression of specific
genes (56). bGRNs thus have the ability to directly influence the
architecture and activity of NNs by modulating neuronal excit-
ability and connectivity (57). Despite a fundamental difference
between the two networks—the NN being an intercellular net-
work and the GRN being an intracellular network (with signal
transduction crossing between GRNs in different cells)—they clearly
influence each other’s activities, presenting an exciting frontier of
future research. Moreover, we also suggest that the wiring of NNs in
the brain imparts a qualitatively different characteristic to the co-
ordination of bGRNs across different spatial locations.

Spatiotemporal Dimensions of bGRN–NN Interplay. The in-
teractions between NNs and bGRNs play out at multiple spatial
and temporal scales. In the spatial dimension (Fig. 2), the activities
of bGRNs differ across brain regions and cell types; each location

may thus exhibit distinct gene expression changes during a spe-
cific behavior (29). bGRN activities at different locations also in-
fluence each other, e.g., via the NN and neuroendocrine signaling
(58). Likewise, the NN is meshed across the entire nervous system,
with even single neurons known to link distant regions (59). Thus,
with both networks exhibiting spatial patterns of activity, their
interplay will assume a level of complexity above and beyond that
of either network alone. This may lead to an increased number of
stable transcriptional states (attractors), as has been shown in
computer simulations that connect each cell’s GRNs to a cell–cell
interaction network (60). Such higher-level interactions can also
influence the stability of, and transitions between, attractors. This
results in more dynamic gene expression profiles, an important
anticipated feature of bGRNs, as noted above. A key direction for
future efforts must be the coupling of real-time neural activity
measurements (61) with high-resolution single-cell transcriptomics
(62) in specific behavioral contexts.

There also are differences between the GRN and NN in tem-
poral dimensions (Fig. 2). The NN operates on the millisecond-to-
second scales (for neuronal firing) and may induce the rapid ac-
tivation of immediate early genes (IEGs) associated with behavior
(57). By contrast, expression and epigenetic changes controlled
by the GRN usually happen over a scale of minutes to hours or
even days (63, 64). Aforementioned feedback from the GRN into
the NN, such as modulation of neuronal connections via changes
of receptor and transmitter levels, can take place over even longer
timescales (65), and the GRN may serve the role of a temporal
“integrator” of organismal experiences over such timescales.
Back-and-forth interactions between bGRNs and NNs may prove
to be an important mechanism for learning and memory and for
past experiences to influence future behavior, possibly even across
generations (66). In short, how this two-layered network architecture
of the brain orchestrates behavioral responses almost certainly in-
volves rich multiscale spatiotemporal patterns and intricate phe-
nomena that fall outside the realm of current knowledge.

Developmental Mechanisms of bGRN–NN Interplay. The dGRN
is important in the understanding of the molecular basis of behavior
in its own right, and not just in comparison to the bGRN. Cross talk
between bGRNs and NNs can be mediated by developmental
processes, thus bringing dGRNs into the fold and suggesting an
intermeshing of three different networks with functional conse-
quences for behavior. For instance, transcriptomic changes asso-
ciated with behavior—the consequence of bGRN activity—often
include genes involved in nervous system development (67). This
suggests that developmental changes, which in the postnatal pe-
riods pertain to the phenomenon of brain plasticity, can be caused
by bGRN activity. Also, it is known that hormonal signals operating
at various timescales can reorganize brain morphology and NN
structure or function (68). These changes are driven by a variety of
factors including environmentally induced changes in sex, domi-
nance hierarchy, and predation threat, and may span across gen-
erations. Developmental processes thus triggered by bGRNs may
result in NN rewiring and growth (69) or changes of cell type pro-
portions in the brain (70), serving as a major mechanism for feed-
back from bGRN to NN, and thus to future behavior.

There are different ways to consider the cycle of relationships
from behavior to GRNs to development and back to NN and
behavior (Fig. 2). The possibility of three-way interactions be-
tween NNs, bGRNs, and dGRNs is strong for developmental
processes that are regulated in an experience-dependent man-
ner. Notably, when the feedback from the bGRN to NN involves
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developmental processes (controlled by the dGRN), it is expected
to have greater longevity than feedback mediated by changes in
neurotransmitter levels. In addition, mechanisms that give rise to
individual differences in behavior can be mapped to aspects of
early brain or synapse structure that are set up during develop-
ment. Drawing on the relatively mature concepts and tools of
developmental biology, especially brain development (19),
should therefore be very useful for future work that aims to elu-
cidate the three-way network interactions that underlie behavior.

Environmental Influences Mediated by bGRNs and NNs. The
brain not only orchestrates behavior, it predicts which behavioral
response would be most suited to environmental conditions, and
as mentioned above, the reciprocal interactions between bGRNs
and NNs also mediate the influence of the environment on be-
havior. Developmental processes invoked by bGRNs provide a
way for environmental changes to impact brain morphology and

NNs (71), which in turn bear upon future behavior. For some be-
haviors there are “critical” periods in behavioral development
during which individuals are more receptive to environmental
influence (72), and such periods may coincide with critical periods
in morphological development such as expansion of particular
brain regions. Recent work has identified some of the GRN
components activated in these periods (73, 74). GRNs also have
an intimate theoretical connection to critical periods: Bifurcations
of developmental trajectories (cell fate decisions) can be attrib-
uted to nonlinear gene–gene interactions in the GRN, and a
critical developmental period is the period just upstream of a bi-
furcation point, when an irreversible binary decision is made,
mediated by the GRN and potentially influenced by environ-
mental inputs. This concept has been demonstrated for cell fate
decisions by cytokines in cell differentiation (25, 75), and we
suggest that analogous dynamics also may play a role in brain
development.

Fig. 2. Neuronal network (NN)–gene regulatory network (GRN) interactions. Spatial dimensions (Bottom): Different cells (neurons), connected by
the NN, may exhibit different GRN activities, even though the GRN itself is unchanged. GRN includes activating (green arrow) and repressive (red
hammer) relationships between genes (circles). Gene expression is indicated by black or gray border, representing high and low expression,
respectively. Signals carried by NNmay influence gene expression in a cell (arrow labeled “Neural Signaling”), and activity of the GRN in one cell
may influence gene expression in another cell, for instance via neuroendocrine signaling. Temporal dimensions (Top Right, thicker arrows indicate
faster interactions): Fast (millisecond-to-second scale) message transmission by the NN (“Neural firing”) can induce, via neural signaling, the
activity of immediate early genes (IEGs) associated with behavior, setting off a cascade of slower transcriptional and epigenetic changes
mediated by a behavioral GRN (bGRN) on the scale of seconds to days. These changes may feed back to the NN if levels of neuroreceptors or
neurotransmitters are affected. In some cases, bGRN-mediated changes can lead to developmental changes, mediated by dGRNs, on a slow
timescale of days, months, or even across generations. These slow developmental changes may affect brain morphology and cause neuronal
growth or rewiring, thus feeding back into the NN.
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The role of experiences and environmental inputs during crit-
ical periods may thus result in the “fine-tuning” of behavioral
development via NN- and GRN-mediated mechanisms. The rel-
ative extent to which the two types of networks are engaged in
environmentally influenced modulation of behavior likely de-
pends on the nature of the environmental input. For instance, an
acute change in environment may act directly on the NN (76) or
trigger specialized signal transduction pathways that modulate
bGRN dynamics resulting in temporary modulation of the NN (77),
and hence of behavior. By contrast, more permanent responses
to chronic environmental change may be mediated by de-
velopmental processes and/or epigenetic mechanisms. For
instance, early adverse experiences have been shown to prime
the genome, via DNAmethylation at specific loci related to stress-
response pathways, so that the individual responds differently to
future stressful events (78–80). Generally speaking, such re-
sponses may be thought to involve drastic changes in individual
regulatory interactions of developmental genes so as to distort
the topography of the transcriptional landscape, opening access
to maladaptive developmental trajectories. Such “decanalization”
of development results in lasting developmental anomalies with
all of the behavioral consequences of an improperly wired NN
(81–83). This reciprocity between genes and neurons also de-
pends on individual differences in temperament due to genotype
and experience, and is the foundation for the brain’s ability to
predict the future (84).

GRNs in Social Behavior
A special focus of behavioral transcriptomics during its first two
decades has been social behavior, from both mechanistic and
evolutionary perspectives (85–87). Should we expect fundamental
differences in bGRNs related to social behavior relative to those
associated with other types of behaviors? Treating bGRNs as a
mapping of inputs (cell communication signals and cellular con-
text) to outputs (gene expression levels), a reasonable null hy-
pothesis is that it should not matter whether the inputs were
triggered by a social or nonsocial stimulus. According to this logic,
there is nothing special about social bGRNs relative to other types
of bGRNs for behaviors that do not involve social interactions
among conspecifics, such as food acquisition or nest construction in
some species. On the other hand, there are also good reasons for
anticipating differences between social bGRNs and other bGRNs.
Social behavior involves repeated interactions between individuals,
an iterative exchange of stimulus and response that is fundamen-
tally different from a unidirectional intake of stimuli from abiotic
sources. This adds yet another network layer—the social network—
to the information-processing system, potentially leading to spe-
cialized patterns and dynamics in bGRN and NN activity, and hence
to special structural properties of these networks.

The need for balance of stability and flexibility is ostensibly
more acute in social behavior compared to nonsocial behaviors.
This is because social behavior involves responding repeatedly to
a greater variety of environmental (social) cues and must be
adaptive yet stable within a range of variation of signals. Animals
with busy social lives have to respond to all of the same envi-
ronmental stimuli as do less social animals (abiotic as well as
biotic, such as predator–prey interactions) and in some cases also
have to maintain a set of individual relationships with conspecifics.
An alternative viewpoint is that animals living in social groups
inhabit a less challenging world, as social groups might buffer
against environmental noise and reduce pressures such as pre-
dation or lead to niche construction. Per this view, whether social

behavior results in a more or less complex bGRN (e.g., by the
above-mentioned aspects of GRN complexity) will depend on the
stimuli that are encountered and how being in a social group
impacts those stimuli and the potential behavioral responses to
them. In light of the above considerations, the nature of social
bGRNs and their special properties compared to bGRNs in gen-
eral poses an intriguing open problem.

Evidence for a Cis-Regulatory Code for Social Behavior:

Evolutionary Perspectives. One finding that supports the pos-
sibility that bGRNs for social behavior have distinct features rela-
tive to other bGRNs comes from a comparative genomics analysis
of the genomes of 10 species of bees exhibiting different levels of
social organization. Kapheim et al. (88) bioinformatically detected
greater TF binding site presence (reflecting stronger binding of
TFs) in gene regulatory regions from social bees compared to
orthologs from solitary bee species. This result suggested that
gene regulation in social bees has increased capacity and com-
plexity relative to nonsocial bees, encoded in the DNA. These
finding and those in refs. 89–91 support the prediction that
changes in gene regulation are key features of the evolutionary
transition from solitary to social life, at least in the social insects.
Perhaps this is related to the appearance of extreme behavioral
states in species of social insects with division of labor and the
performance of the same set of behaviors by individuals for an
extended period of time.

The result from Kapheim et al. (88) gives the first glimpse of a
special signature tied to GRNs for social behavior, but this is in-
triguingly reminiscent of a cis-regulatory signature seen in de-
velopmental studies in Drosophila. Li et al. (92) reported greater
homotypic TF binding site clustering in blastoderm-stage (early)
enhancers than in those for other developmental programs,
possibly reflecting the greater complexity of cell fate decisions
driven by positional information in the early Drosophila embryo.
We speculate that just as the greater complexity of expression
patterns achieved in the syncytial embryo is reflected in the
complexity of associated enhancers, perhaps the increased phe-
notypic complexity of social behavior is achieved, in part, by in-
creases in the complexity of cis-regulatory architectures and
GRNs. The cis-regulatory basis of evolutionary changes in social
behavior was also investigated by York et al. (93), who studied
divergence in bower-building behavior among Lake Malawi
cichlid fishes. They identified behavior-associated genetic variants
and reported allele-specific brain gene expression that depended
on behavioral context. Their study provides a concrete example of
the connection between cis-regulatory evolution and diversity of
social behavior.

How might GRNs become more complex? With respect to cis-
regulatory organization, this could involve greater numbers of
enhancers (94) or greater numbers of TFs regulating each en-
hancer (95). In the case of early embryonic developmental en-
hancers, it is the latter, but it is not yet known which scenario
accounts for the increased TF binding site presence observed for
social bees. Improved methods for enhancer discovery, e.g.,
chromatin accessibility profiling via assay for transposase-
accessible chromatin using sequencing (ATAC-seq), massively
parallel activity assays such as self-transcribing active regulatory
region sequencing (STARR-seq), or effective insect-specific com-
putational approaches should help to address this question (39,
96, 97).

For species with an extensive repertoire of social behavior,
experience and exposure to specific social stimuli can be recorded
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quantitatively as changes in the gene expression profile (98), much
like an odometer records distance. Principles of cis-regulatory
organization associated with such a quantitative recording of
temporal information may thus have similarities to those related
to the precise spatial readout in early embryo body-plan de-
velopment, offering another perspective on the observation by
Kapheim et al. It is still too early to know conclusively whether
social behavior involves unique features of GRNs and cis-regulatory
sequences, but emerging evidence seems to point to an affirmative
answer. The correlation of cis-regulatory potential and social
complexity is remarkable given the large gap it bridges from
genotype to behavioral phenotype and needs rigorous confirmation
in the future.

The question of unique features of bGRNs for social behavior
may also relate to unique aspects of the evolutionary dynamics of
social behavior. The multilayered network architecture underlying
social behavior, including the social network layer, with spatially
diverse and temporally dynamic cross talk between layers, is likely
to impose a range of evolutionary constraints, with parallels in the
coevolutionary dynamics of multiple signal transduction pathways
that exhibit cross talk (99). An interesting evolutionary perspective
into social behavior also arises from the fact that the unit of se-
lection lies, at least in cases of extreme sociality, above the indi-
vidual and at the societal level (100). This special evolutionary
status of certain social behaviors may be reflected in the molecular
mechanisms evolved to implement them. A recent study has also
examined the provocative idea that social organization can drive
the evolution of GRNs by affecting genome structure (101).

Future Directions
This is a particularly exciting time for molecular explorations of
behavior. GRNs are a unifying construct today for scientists
embarking on such explorations along diverse routes. Detailed
analyses of bGRNs will not only break new ground in our un-
derstanding of behavior (8) but also provide broader insights into gene
regulation, complementary to those obtained from developmental
studies.

A number of emerging technologies will play key roles in fu-
ture research on bGRNs. Perhaps leading this pack is the rapidly
evolving technology of single-cell RNA sequencing (scRNA-seq)
(35, 36), which allows transcriptomic profiling at cellular resolu-
tion, as well as single-cell epigenomic profiling (102). These new
developments will help us bridge the existing gap between the
true bGRNs operational within different cell types and the ap-
proximate reconstruction afforded by traditional “bulk” assays.
They will also help solve a major mystery about bGRNs: that
transcriptomic profiles of brain regions or even whole brains often
show a striking correspondence with behaviors even though the
GRNs underlying these profiles are properties of individual cells.
That this relates to the fact that behavior is an emergent property

of many cells seems intuitive, but the precise mechanisms of in-
tegration are currently unknown (103). By contrast, developmental
states do not present this mismatch of scales, since develop-
mental phenotypes, whether at the cellular or tissue level, as well
as the associated GRNs, are cellular properties, even if they are
influenced by intercellular communication. Do bGRNs have a
level of organization that transcends the cell, as theories of cou-
pled GRNs have suggested (60)? The ability to tease apart tran-
scriptomic profiles and GRNs at the individual cell level, especially
in the face of extreme spatial diversity and cell type heterogeneity
in the brain, will play a crucial role in finding answers to this and
other pressing questions. Emerging technologies for “spatial
transcriptomics” (104) and their combination with scRNA-seq
will prove to be particularly noteworthy in this regard, and
also allow the above cellular insights to begin to be connected to
neural circuitry.

While our discussion focuses on mRNA levels as representing
the regulatory processes in play, this is a simplification motivated
by the current sparsity of data on other levels such as noncoding
RNA (e.g., microRNA and long noncoding RNA), exosomes, epi-
genetics, peptides, proteins, lipids, carbohydrates, and metabo-
lites, all of which are part of what define a cell state and have been
reported as being important in behavior (105–107). Various
“omics” technologies are already available and will soon become
well-established approaches to better inform these complemen-
tary views of molecular processes. Powerful new techniques to
control and manipulate gene and neural activity, such as directed
cell CRISPR (108) and optogenetics (109), as well as approaches
such as three-dimensional brain organoids (110) that facilitate
controlled sample generation, are likely to be crucial in teasing
apart cell type- and region-specific activities of bGRNs. In addition
to more accurate reconstructions of GRNs, future investigations
will have to map out the cross talk between bGRNs, dGRNs, and
NNs in various behavioral contexts, and large-scale efforts in
connectomics, such as the Human Connectome Project (4) and
Brainbow (111), will provide a solid foundation for such studies.
Information from all of these sources should enable the devel-
opment of a comprehensive theory of behavior in molecular
terms.

Data Availability. There are no new data associated with
this manuscript.
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