
RESEARCH ARTICLE

MASSpy: Building, simulating, and visualizing

dynamic biological models in Python using

mass action kinetics

Zachary B. HaimanID
1, Daniel C. Zielinski1, Yuko Koike1,2, James T. YurkovichID

1,2,

Bernhard O. PalssonID
1,3*

1 Department of Bioengineering, University of California San Diego, La Jolla, California, United States of

America, 2 Institute for Systems Biology, Seattle, Washington, United States of America, 3 Novo Nordisk

Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark

* palsson@ucsd.edu

Abstract

Mathematical models of metabolic networks utilize simulation to study system-level mecha-

nisms and functions. Various approaches have been used to model the steady state behav-

ior of metabolic networks using genome-scale reconstructions, but formulating dynamic

models from such reconstructions continues to be a key challenge. Here, we present the

Mass Action Stoichiometric Simulation Python (MASSpy) package, an open-source compu-

tational framework for dynamic modeling of metabolism. MASSpy utilizes mass action kinet-

ics and detailed chemical mechanisms to build dynamic models of complex biological

processes. MASSpy adds dynamic modeling tools to the COnstraint-Based Reconstruction

and Analysis Python (COBRApy) package to provide an unified framework for constraint-

based and kinetic modeling of metabolic networks. MASSpy supports high-performance

dynamic simulation through its implementation of libRoadRunner: the Systems Biology

Markup Language (SBML) simulation engine. Three examples are provided to demonstrate

how to use MASSpy: (1) a validation of the MASSpy modeling tool through dynamic simula-

tion of detailed mechanisms of enzyme regulation; (2) a feature demonstration using a work-

flow for generating ensemble of kinetic models using Monte Carlo sampling to approximate

missing numerical values of parameters and to quantify biological uncertainty, and (3) a

case study in which MASSpy is utilized to overcome issues that arise when integrating

experimental data with the computation of functional states of detailed biological mecha-

nisms. MASSpy represents a powerful tool to address challenges that arise in dynamic

modeling of metabolic networks, both at small and large scales.

Author summary

Genome-scale reconstructions of metabolism appeared shortly after the first genome

sequences became available. Constraint-based models are widely used to compute steady

state properties of such reconstructions, but the attainment of dynamic models has

remained elusive. We thus developed the MASSpy software package, a framework that

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008208 January 28, 2021 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Haiman ZB, Zielinski DC, Koike Y,

Yurkovich JT, Palsson BO (2021) MASSpy:

Building, simulating, and visualizing dynamic

biological models in Python using mass action

kinetics. PLoS Comput Biol 17(1): e1008208.

https://doi.org/10.1371/journal.pcbi.1008208

Editor: Pedro Mendes, University of Connecticut

School of Medicine, UNITED STATES

Received: July 27, 2020

Accepted: December 21, 2020

Published: January 28, 2021

Copyright: © 2021 Haiman et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The source code for

MASSpy is available online (https://github.com/

SBRG/MASSpy) and in the S1 File under an MIT

license. MASSpy is also hosted as a Python

package on the Python Package Index (https://pypi.

org/project/masspy/). All required external

dependencies integrated and utilized by MASSpy

are also available on the Python Package Index

(https://pypi.org/) and are licensed under their

respective licensing terms. Both the Gurobi

Optimizer (Gurobi Optimization, Houston, TX) and

the IBM CPLEX Optimizer (IBM, Armonk, NY) are

https://orcid.org/0000-0001-6175-5050
https://orcid.org/0000-0002-9403-509X
https://orcid.org/0000-0003-2357-6785
https://doi.org/10.1371/journal.pcbi.1008208
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008208&domain=pdf&date_stamp=2021-02-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008208&domain=pdf&date_stamp=2021-02-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008208&domain=pdf&date_stamp=2021-02-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008208&domain=pdf&date_stamp=2021-02-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008208&domain=pdf&date_stamp=2021-02-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008208&domain=pdf&date_stamp=2021-02-09
https://doi.org/10.1371/journal.pcbi.1008208
http://creativecommons.org/licenses/by/4.0/
https://github.com/SBRG/MASSpy
https://github.com/SBRG/MASSpy
https://pypi.org/project/masspy/
https://pypi.org/project/masspy/
https://pypi.org/


enables the construction, simulation, and visualization of dynamic metabolic models.

MASSpy is based on the mass action kinetics for each elementary step in an enzymatic

reaction mechanism. MASSpy seamlessly unites existing software packages within its

framework to provide the user with various modeling tools in one package. MASSpy inte-

grates community standards to facilitate the exchange of models, giving modelers the

freedom to use the software for different aspects of their own modeling workflows. Fur-

thermore, MASSpy contains methods for generating and simulating ensembles of models,

and for explicitly accounting for biological uncertainty. MASSpy has already demon-

strated success in a classroom setting. We anticipate that the suite of modeling tools incor-

porated into MASSpy will enhance the ability of the modeling community to construct

and interrogate complex dynamic models of metabolism.

This is a PLOS Computational Biology Software paper.

Introduction

The availability of genome sequences and omic data sets has led to significant advances in met-

abolic modeling at the genome scale, resulting in the rapid expansion of available genome-

scale metabolic reconstructions [1]. The attainability of new data has also led to the generation

of new metabolic modeling software tools that can process these data [2–4]. One of the most

broadly used metabolic modeling software suites, COnstraint-Based Reconstruction and Anal-

ysis (COBRA) [5], provides a scalable framework that is invaluable for the contextualization

and analysis of multi-omic data, as well as for understanding, predicting, and engineering

metabolism [6–16]. While several methods have been developed that allow COBRA models to

integrate certain data types to model long timescale dynamics [17–19], COBRA models are

inherently limited by the flux-balance assumption.

Kinetic modeling methods use detailed mechanistic information to model dynamic states

of a network [20]. The inclusion of multiple detailed enzymatic mechanisms presents chal-

lenges in formulating and parameterizing stable large-scale kinetic models. Further, additional

issues arise when integrating incomplete experimental data into metabolic reconstructions,

necessitating the need for approximation methods to gap fill missing values that satisfy the

thermodynamic constraints imposed by the system [21, 22].

Various efforts have been made to bridge the gap between constraint-based and kinetic

modeling methods in order to address the challenges associated with dynamic modeling [21–

24]. One such methodology is the Mass Action Stoichiometric Simulation (MASS) approach,

in which mass action kinetics are used to construct condition-specific dynamic models [24–

28]. The MASS modeling approach provides an algorithmic, data-driven workflow for gener-

ating in vivo kinetic models in a scalable fashion [29]. The MASS methodology can be used in

tandem with COBRA methods for both steady-state and dynamic analyses of a metabolic

reconstruction in a single workflow. MASS models can incorporate the stoichiometric descrip-

tion of enzyme kinetic mechanisms and have been used to explicitly compute fractional states

of enzymes, providing insight into regulation mechanisms at a network-level [26, 30]. The

MASS modeling framework has been implemented in the MASS Toolbox [31], but is limited

by its reliance on a commercial software platform (Mathematica).

PLOS COMPUTATIONAL BIOLOGY MASSpy: Modeling dynamic biological processes in Python

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008208 January 28, 2021 2 / 20

freely available for academic use, with solvers and

installation instructions found at their respective

websites. Images for Docker containers that

include the MASSpy software can be downloaded

online from the DockerHub Registry (https://hub.

docker.com/r/sbrg/masspy), or they can be built

locally to include the licensed commercial

optimization solvers. Instructions for MASSpy

installation, including instructions for using

MASSpy with Docker, are found in the repository

README or in the documentation (https://masspy.

readthedocs.io and S2 File). The data, scripts, and

instructions needed to reproduce results of the

presented examples are also available on GitHub

(https://github.com/SBRG/MASSpy-publication)

and in the supplement (S3 File).

Funding: Funding for this work and support for

ZBH, DZ, and BOP was provided by the Novo

Nordisk Foundation through the Center for

Biosustainability (https://www.biosustain.dtu.dk/)

at the Technical University of Denmark

[NNF10CC1016517]. YK and JTY were supported

by the Institute for Systems Biology’s Translational

Research Fellows Program (https://isbscience.org/

training/trp/translational-research-fellows-

program/). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1008208
https://hub.docker.com/r/sbrg/masspy
https://hub.docker.com/r/sbrg/masspy
https://masspy.readthedocs.io
https://masspy.readthedocs.io
https://github.com/SBRG/MASSpy-publication
https://www.biosustain.dtu.dk/
https://isbscience.org/training/trp/translational-research-fellows-program/
https://isbscience.org/training/trp/translational-research-fellows-program/
https://isbscience.org/training/trp/translational-research-fellows-program/


Here, we detail the Mass Action Stoichiometric Simulation Python (MASSpy) package, a

versatile computational framework for dynamic modeling of metabolism. MASSpy expands

the modeling framework of the COnstraint-Based Reconstruction and Analysis Python

(COBRApy) [32] package by integrating dynamic simulation and analysis tools to facilitate

dynamic modeling. Further, MASSpy contains various algorithms designed to address and

overcome the issues that arise when incorporating experimental data and biological variation

into dynamic models with detailed mechanistic information. By addressing the issues associ-

ated with integrating physiological measurements and biological mechanisms in dynamic

modeling approaches, we anticipate that MASSpy will become a powerful modeling tool for

modeling dynamic behavior in metabolic networks. The source code for MASSpy is freely

available on GitHub (https://github.com/SBRG/MASSpy), and the documentation—along

with tutorials—can be found at ReadTheDocs. (https://masspy.readthedocs.io).

Design and implementation

Developing in Python

The MASSpy software package (S1 File) is written entirely in Python 3, an interpreted object-

oriented high-level programming language that has become widely adopted in the scientific

community due to its clean syntax with straightforward semantics that make it intuitive to

learn [33] and its unique features for high-level scientific computing (e.g., a flexible interface

to compiled languages such as C++ [34]). The open-source nature of Python avoids the inher-

ent limitations associated with costly commercial software [35]. Consequently, developing in

Python provides access to a growing variety of open-source scientific software libraries, includ-

ing key data science packages of the SciPy ecosystem [33, 36]. MASSpy relies extensively on

these packages for numerical computation (NumPy [37]), symbolic mathematics (SymPy

[38]), high-performance data structures that easily transfer and export content across packages

(Pandas [39]), and data visualization (Matplotlib [40]). IPython (Jupyter) notebooks [41, 42]

provide an interactive Python environment for developing and executing various applications.

Furthermore, containerization of applications through Docker [43] facilitates their exchange

and deployment using portable containers bundled with standardized computational environ-

ments. See Table 1 for a list of scientific packages integrated into the MASSpy package and

how they are utilized for various purposes within the MASSpy framework.

Building on the COBRApy framework

To facilitate the integration of constraint-based and dynamic modeling frameworks, MASSpy

utilizes the COBRApy package [32] as a foundation to build upon and extend in order to sup-

port dynamic simulation and analysis capabilities. MASSpy derives several benefits from

building on the COBRApy framework, including exploiting the direct inclusion of various

COBRA methods already implemented in Python. The inclusion of COBRA methods is made

simple using Python inheritance behavior; the three core COBRApy classes (Metabolite, Reac-

tion, and Model) serve as the base classes for three core MASSpy classes (MassMetabolite,

MassReaction, and MassModel) as described in the MASSpy documentation (https://masspy.

readthedocs.io and S2 File). Inheritance behavior maintains the functionality of the COBRA

methods for gene deletion studies by preserving the Boolean representation of Gene-Protein-

Reaction (GPR) rules that indicate whether the genes essential for an enzyme-catalyzed reac-

tion are expressed in the organism [49]. Consequently, all methods for COBRApy objects

readily accept the analogous MASSpy objects as valid input, preserving the commands and

conventions familiar to current COBRApy users. COBRApy is a popular software platform

preferred by many in the COBRA community [5]; therefore, preserving COBRApy

PLOS COMPUTATIONAL BIOLOGY MASSpy: Modeling dynamic biological processes in Python

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008208 January 28, 2021 3 / 20

https://github.com/SBRG/MASSpy
https://masspy.readthedocs.io
https://masspy.readthedocs.io
https://masspy.readthedocs.io
https://doi.org/10.1371/journal.pcbi.1008208


conventions aids in the adoption of MASSpy among those users. Inheriting from the COBR-

Apy classes additionally allows for easy conversion between COBRApy and MASSpy objects

without loss of relevant biochemical and numerical information. These two features of Python

inheritance are critical in maintaining functionality for COBRApy implementations of various

flux-balance analysis (FBA) algorithms in MASSpy.

Adding dynamic simulation capabilities

The creation and simulation of dynamic models requires deriving a set of ordinary differential

equations (ODEs) from the stoichiometry of a reconstructed network and assigning kinetic

rate laws to each reaction in the network [21]. MASSpy utilizes SymPy [38] to represent reac-

tion rates and differential equations as symbolic expressions. All MassReaction objects use

mass action kinetics to automatically generate a default rate law; however, user-defined rate

laws can be assigned to replace mass action rate laws with alternative equations, such as those

derived using Michaelis-Menten kinetics. All MassMetabolite objects generate their associated

differential equation by combining the rates of reactions in which they participate and contain

the initial conditions necessary to solve the system of ODEs.

Table 1. Overview of select scientific software with relevance to MASSpy functionality.

Package Relevance to MASSpy functionality Reference

COBRApy Python package for reconstruction and simulation of genome-scale flux states. Utilized as a framework for MASSpy

and enables a variety of COBRA methods.

[32]

Escher A Python interface to the Escher visualization package. Used to build, share, and embed visualizations of metabolic

pathway and node maps.

[44]

libRoadRunner High-performance and portable SBML simulation engine for systems biology. Provides dynamic simulation and

NLEQ steady state determination methods for SBML compatible models.

[45]

libSBML A Python interface for reading and writing models in SBML. [46]

Matplotlib Fundamental package for visualization in Python. Provides comprehensive plotting tools for visualizing observations,

including dynamic simulation results and phase portraits

[40]

NumPy Fundamental Python package for numerical computation and data science. Provides efficient array/matrix data

types, operations, and random number generation when sampling.

[37]

Optlang Formulation of optimization problems using symbolic expressions and native Python algebra syntax. Provides a

common Python interface for various optimization solver backends.

[47]

Pandas High-performance data structures and analysis tools for data science in Python. [39]

SciPy A collection of scientific algorithms in Python. Primarily used for interpolation of dynamic simulation results and

linear algebra operations

[36]

SymPy Generation and manipulation of symbolic mathematical expressions in Python. Primarily used to formulate ordinary

differential equations, rate laws, and optimization problems.

[38]

swiglpk A Python interface to the GNU Linear Programming Kit used for optimization. Utilized by Optlang to provide LP

and MILP support.

[48]

cplexa A Python interface to the IBM CPLEX Optimizer used for optimization. Utilized by Optlang to provide LP, MILP,

and QP support.

IBM, Armonk, NY

gurobipya A Python interface to the Gurobi Optimizer used for optimization. Utilized by Optlang to provide LP, MILP, and QP

support.

Gurobi Optimization,

Houston, TX

iPython

(Jupyter)b
Interactive computational environment for the development and exchange of scientific workflows. Utilized for

interactive computation, interactive visualization, and documentation.

[41, 42]

Dockerb Containerize and deploy applications in standardized, portable environments. Facilitates the reliable creation,

exchange and deployment of containers packaged with MASSpy and other related applications.

Docker Inc., Palo Alto, CA

[43]

Abbreviations: Linear Programming (LP); Mixed Integer Linear Programming (MILP); Quadratic Programming (QP); Systems Biology Markup Language (SBML).
aCommercial optimization solvers with Python APIs and free academic licenses.
bUtilized for code development and distribution purposes.

https://doi.org/10.1371/journal.pcbi.1008208.t001

PLOS COMPUTATIONAL BIOLOGY MASSpy: Modeling dynamic biological processes in Python

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008208 January 28, 2021 4 / 20

https://doi.org/10.1371/journal.pcbi.1008208.t001
https://doi.org/10.1371/journal.pcbi.1008208


To solve the system of ODEs, the MASSpy Simulation class employs libRoadRunner [45], a

high-performance Systems Biology Markup Language (SBML) [50] simulation engine that is

capable of supporting most SBML Level 3 specifications. The libRoadRunner utilizes a Just-In-

Time (JIT) compiler with an LLVM JIT compiler framework to compile SBML-specified mod-

els into machine code, making the libRoadRunner simulation engine appropriate for solving

large models effectively. Although libRoadRunner has a large suite of capabilities, it is cur-

rently used for two purposes in MASSpy: the steady-state determination via NLEQ1 and

NLEQ2 global newton methods [51], and dynamic simulation via integration of ODEs

through deterministic integrators, including CVODE solver from the Sundials suite [52].

Because libRoadRunner requires models to be in SBML format, the Simulation object exports

models into SBML format before compiling them into machine code via libRoadRunner.

Model import, export, and network visualization

MASSpy utilizes two primary formats for the import and export of models: SBML format and

JavaScript Object Notation (JSON). MASSpy currently supports SBML L3 core specifications

[53] along with the FBC [54] and Groups [55] packages, providing support for both con-

straint-based and dynamic modeling formats. Although SBML is necessary to utilize libRoa-

dRunner, there are a number of additional benefits obtained by supporting SBML. In addition

to being a standard format among the general systems biology community [50], SBML is a

widely used model format specifically among members of the COBRA modeling community

[5].

MASSpy also provides support for importing and exporting models via JSON, a text-based

syntax that is useful for exchanging structured data between programming languages [56]. The

MASSpy JSON schema is designed for interoperability with Escher [44], a pathway visualiza-

tion tool designed to visualize various multi-omic data sets mapped onto COBRA models. The

interoperability with Escher is exploited by MASSpy to provide various pathway and node

map visualization capabilities.

Mechanistic modeling of enzyme regulation

The reconstruction of all microscopic steps performed by an enzyme (an “enzyme module”)

represents the full stoichiometric description of an enzyme using mass action kinetics [27].

MASSpy facilitates the construction of enzyme modules through the EnzymeModule, Enzyme-

ModuleForm, and EnzymeModuleReaction classes, which inherit from the MassModel, Mass-

Metabolite, and MassReaction classes, respectively. The EnzymeModule class contains

methods and attribute fields to aid in the construction of EnzymeModules based on the steps

outlined for constructing enzyme modules in Du et al. [27]. Given the number and complexity

of possible enzymatic mechanisms [57], MASSpy also provides the ability to group relevant

objects into different user-defined categories, such as active/inactive states and different

enzyme complexes. The EnzymeModuleDict objects are used to represent enzyme modules

once merged into a larger model, preserving user-defined categories and other information

relevant to the construction of the EnzymeModule, such as total enzyme concentration. More

details can be found in the MASSpy documentation (S2 File).

Ensemble sampling, assembly, and modeling

Ensemble approaches are used to address various issues concerning parameter uncertainty

and experimental error in metabolic models [22]. Ensemble modeling refers to the assembly of

dynamic models with similar mechanistic formulations that span the feasible kinetic solution

space. Ensemble modeling allows for the range of possible network phenotypes to be explored,

PLOS COMPUTATIONAL BIOLOGY MASSpy: Modeling dynamic biological processes in Python

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008208 January 28, 2021 5 / 20

https://doi.org/10.1371/journal.pcbi.1008208


proving to be an valuable tool when parameterization is incomplete or unknown, as is often

the case with kinetic models. MASSpy enables ensemble modeling approaches through the use

of Markov chain Monte Carlo (MCMC) sampling of fluxes and concentrations [58, 59]. The

flux sampling capabilities can be derived from the COBRApy package and employ two differ-

ent hit-and-run sampling methods: one with a low memory footprint [60] and another with

multiprocessing support [61]. To sample metabolite concentrations, MASSpy employs a

ConcSolver object to populate the optimization solver with constraints for thermodynamically

feasible concentration ranges [28, 62, 63] and two hit-and-run sampling methods for concen-

trations were implemented in MASSpy with algorithms analogous to those for flux sampling.

MASSpy provides several built-in methods for ensemble generation from sampling data. Once

generated, the ensemble of models can be loaded into the MASSpy Simulation object, simu-

lated, and visualized using built-in ensemble visualization and analysis methods. Additional

details can be found in the MASSpy documentation (S2 File).

Results

We have conducted a validation, a feature demonstration, and a case study that exemplify how

MASSpy features combine to facilitate the dynamic modeling of metabolism (Fig 1). We vali-

dated MASSpy as a modeling tool by describing mechanisms of enzyme regulation using

enzymes modules to replicate select results presented in Yurkovich et al. [24]. A variety of fea-

tures are demonstrated through a workflow in which an ensemble of stable kinetic models is

generated through MCMC sampling to examine biological variability while satisfying the ther-

modynamic constraints imposed by the network. In the case study, we integrated COBRA and

MASS modeling methodologies to create a kinetic model of E. coli glycolysis from a metabolic

reconstruction, providing novel insight into functional states of the proteome and activities of

different isozymes. See Table 2 for a comparison of explicitly supported MASSpy features with

those of other dynamic modeling tools.

Validation as a modeling tool through enzyme regulation in MASS models

Here, we demonstrated MASSpy as a modeling tool and the MASSpy implementation of

enzyme modules by replicating the results produced by Yurkovich et al. [24]. The authors used

the MASS Toolbox [31] to elucidate the systems-level effects of allosteric regulation in the gly-

colytic pathway of red blood cells (RBCs). Enzyme modules for hexokinase, phosphofructoki-

nase, and pyruvate kinase were reconstructed using the mechanistic formulations of ligand-

binding events [26, 27] and merged with a MASS model of RBC metabolism comprised of the

glycolytic pathway, the Rapoport-Luebering (RL) shunt, and hemoglobin binding events for

oxygen and 2,3-diphosphoglycerate [29]. Enzyme modules were merged into the glycolytic

pathway in different combinations, and dynamic simulations were subsequently performed to

characterize the interactions of the three allosterically regulated kinases when responding to

disturbances in ATP utilization.

To validate MASSpy as a modeling tool, we used MASSpy to replicate key observations pro-

duced by the MASS Toolbox as presented in Yurkovich et al. [24]. Using MASSpy, we recon-

structed the RBC metabolic model and the enzyme modules for the three key regulatory

kinases as previously described. We integrated the reconstructed enzyme modules into the gly-

colytic model to introduce varying levels of regulation. Because enzyme modules were con-

structed and parameterized for the steady-state conditions of the MASS model, addition of an

enzyme module to a MASS model was a straightforward and scalable process. The overall reac-

tion representation for the enzyme in the MASS model was removed and replaced with the set

of reactions that comprise the microscopic steps of the enzyme module (Fig 2).

PLOS COMPUTATIONAL BIOLOGY MASSpy: Modeling dynamic biological processes in Python

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008208 January 28, 2021 6 / 20

https://doi.org/10.1371/journal.pcbi.1008208


We performed dynamic simulations, subject to physiologically relevant perturbations, to pro-

vide a fine-grained view of the concentration and flux solution profiles for individual enzyme

signals and qualitatively represent the systemic effects of additional regulatory mechanisms. We

then used MASSpy visualization methods to replicate key results [24] (S3 File). Through this

case study, we have demonstrated how enzyme modules were constructed from enzymatic

mechanisms in MASSpy, and we validated MASSpy as a dynamic modeling tool by exploring

previously reported systems-level effects of regulation [24]. See S3 File for all data and scripts

associated with the validation, including kinetic parameters for all three enzyme modules.

Demonstration of features through ensemble sampling, assembly, and

modeling

Many ensemble modeling approaches utilize sampling methods to approximate missing values

and quantify uncertainty in metabolic models [21, 22, 28, 59, 64, 65]. To demonstrate the

Fig 1. Overview of MASSpy features. (A) MASSpy expands COBRApy to provide constraint-based methods for

obtaining flux states. (B) Thermodynamic principles are utilized by MASSpy to sample concentration solution spaces

and to evaluate how thermodynamic driving forces shift under different metabolic conditions. (C) MASSpy enables

dynamic simulation of models to characterize transient dynamic behavior and contains ensemble modeling methods

to represent biological uncertainty. (D) Network properties such as relevant timescales and system stability are

characterized by MASSpy using various linear algebra and analytical methods. (E) MASSpy contains built-in functions

that enable the visualization of dynamic simulation results. (F) Mechanisms of enzymatic regulation are explicitly

modeled in MASSpy through enzyme modules, enabling computation of catalytic activities and functional states of

enzymes.

https://doi.org/10.1371/journal.pcbi.1008208.g001

PLOS COMPUTATIONAL BIOLOGY MASSpy: Modeling dynamic biological processes in Python

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008208 January 28, 2021 7 / 20

https://doi.org/10.1371/journal.pcbi.1008208.g001
https://doi.org/10.1371/journal.pcbi.1008208


sampling and ensemble handling capabilities of MASSpy, we utilized MCMC sampling with

an ensemble modeling approach to assess the dynamics for a range of pyruvate kinase enzyme

modules (Fig 3). Using RBC glycolysis and hemoglobin as the reference model [24], we used

MCMC sampling to generate 15 candidate flux states and 15 candidate thermodynamically

Table 2. Comparison of explicit helper methods for selected dynamic modeling tools.

Software MASSpy

(COBRApy)

MASS Toolbox Tellurium PySB PySCeS

(CBMPy)

COPASI

Version 0.1.1

(0.19.0)

1.2.0 2.1.6 1.11.0 0.9.7

(0.7.25)

4.29.228

Environment Python

3.6+

Mathematica

9.0+

Python

2.7, 3.4+

Python

2.7, 3.6+

Python

2.7, 3.5+

Bindings:

C#, Java,

Python

2.7, 3.6+

Model Construction Model merging yes yes yes yes yes

Automated rate

law construction

yes yes yes yes yes

Enzyme modules yes yes yes

Symbolic expression

manipulation

yes yes yes yes

Boolean GPR associations yes yes yes

Scanning and Sampling

(MCMC)

Flux sampling yes yes yes

Concentration sampling yes yes

Parameter sampling yes yes

Parameter scan yes yes yes yes

Simulation ODE yes yes yes yes yes yes

Stochastic yes yes yes

Optimization yes yes yes yes

Ensemble yes yes yes yes

Analysis Steady state yes yes yes yes yes yes

Stoichiometric yes yes yes yes yes

Thermodynamic yes

Sensitivity yes yes yes yes

Metabolic Control yes yes yes

Stability yes yes yes yes yes

Flux balance /

flux variability

yes yes yes

Gene essentiality /

gene deletion

yes yes yes

Visualization Time profiles yes yes yes yes yes

Phase portraits yes yes yes yes

Pathway maps yes yes yes yes

QC/QA Elemental balancing yes yes

Thermodynamic feasibility yes yes

Units yes yes yes

Standards SBML yes yes yes yes yes yes

SED-ML yes yes yes

COMBINE yes yes yes

Explicitly supported features (via “helper methods” or “helper classes”) are those that are directly provided by the tool or software package itself and do not include those

that could be piped in using third-party packages or tools (i.e., directly calling a function from the package/tool as opposed to using other Python packages to achieve the

goal).

https://doi.org/10.1371/journal.pcbi.1008208.t002

PLOS COMPUTATIONAL BIOLOGY MASSpy: Modeling dynamic biological processes in Python

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008208 January 28, 2021 8 / 20

https://doi.org/10.1371/journal.pcbi.1008208.t002
https://doi.org/10.1371/journal.pcbi.1008208


feasible concentration states, allowing for variables to deviate from their reference state by up

to 80 percent. This procedure resulted in 225 candidate models that represent all possible com-

binations of flux and concentration states. We calculated pseudo-elementary rate constants

(PERCs) and simulated models to steady state. We simulated a 50% increase in ATP utilization

to mimic a physiologically relevant disturbance, such as increased shear stress due to arterial

constriction [66]. Out of the 225 models, 10 models were discarded due to instability, deter-

mined by an inability to reach a steady state through simulation.

We then reconstructed enzyme modules for pyruvate kinase [24] for the remaining 215

models. Numerical values of rate constants for each enzyme were determined using the SciPy

Fig 2. Enzyme modules are explicit representations of enzymatic regulatory mechanisms. (A) The reaction catalyzed by pyruvate kinase is replaced

with the stoichiometric description of the enzymatic mechanism. The steady state values obtained after simulating a 50% increase of ATP utilization are

mapped onto a metabolic pathway map drawn using Escher [44]. The colors represent flux values and range from red to purple to gray, with red

indicating higher flux values and gray indicating lower flux values. (B) Enzyme modules provide a network-level perspective of regulation mechanisms

by plotting systemic quantities against fractional states of enzymes as described in Yurkovich et al. [24]. (C) The different signals of the enzyme module

can be observed to provide enzyme-level resolution of the regulatory response.

https://doi.org/10.1371/journal.pcbi.1008208.g002

PLOS COMPUTATIONAL BIOLOGY MASSpy: Modeling dynamic biological processes in Python

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008208 January 28, 2021 9 / 20

https://doi.org/10.1371/journal.pcbi.1008208.g002
https://doi.org/10.1371/journal.pcbi.1008208


implementation of a trust-region method for nonlinear convex optimization [67]. Without

knowledge of physiological constraints, the numerical solutions for rate constants produced

by optimization routine were not guaranteed to be physiologically feasible. Therefore, we inte-

grated these enzyme modules into their MASS models and simulated with and without the

ATP utilization increase to ensure they had stable steady states before and after the perturba-

tion. All remaining 215 models were able to successfully reach stable steady states and subse-

quently assembled into the ensemble for dynamic simulation and analysis.

The time-course results for the ensemble energy charge deviation were plotted with a 95%

confidence interval. From these results, it can be seen that the mean energy charge decreased

at most about 25% from its baseline value (Fig 3C). Steady state analysis of the pyruvate kinase

enzyme modules after the disturbance revealed a tendency for the enzyme to remain in an

active state, with a median value of approximately 61%. The differences in candidate flux and

concentration states resulted in an interquartile range between 36-88% of total pyruvate

kinase, with all variations of pyruvate kinase in the ensemble maintaining at least 10% activity.

Furthermore, examination of the relative flux load through the Ri,AP forms showed that most

of the flux load was carried by the R2,AP and R3,AP reaction steps while a minuscule fraction

was carried by the R0,AP reaction step, regardless of variation. However, the variations had an

effect on whether R2,AP carried more flux than R3,AP, and whether the remaining flux was pre-

dominantly distributed through the R1,AP or the R4,AP reaction step. Through this demonstra-

tion, we have demonstrated how MASSpy sampling facilitated the assembly and simulation of

Fig 3. A MASSpy workflow for ensemble creation and modeling using MCMC sampling. A typical ensemble

modeling workflow using MASSpy to generate and assemble an ensemble of stable kinetic models for dynamic

simulation and analysis. (A) The solution spaces for fluxes and concentrations are sampled using MCMC sampling to

generate data for candidate model states. Rate constants are obtained through parameter fitting for elementary rate

constants and computation of PERCs. (B) Sampling data is integrated into the candidate models, and models are

subsequently filtered based on their stability to assemble the ensemble of stable dynamic models. Once assembled, the

ensemble is used to study biological variability in the network of interest through (C) dynamic simulation and (D)

analysis.

https://doi.org/10.1371/journal.pcbi.1008208.g003

PLOS COMPUTATIONAL BIOLOGY MASSpy: Modeling dynamic biological processes in Python

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008208 January 28, 2021 10 / 20

https://doi.org/10.1371/journal.pcbi.1008208.g003
https://doi.org/10.1371/journal.pcbi.1008208


an ensemble to characterize the dynamic response of a key regulatory enzyme and quantify its

functional states after a physiologically relevant disturbance. See S3 File for all data and scripts

associated with the ensemble modeling demonstration.

Case study: Computing functional states of the E. coli proteome

Here, we illustrated unique features of MASSpy in a workflow to compute the functional states

of the proteome, providing insight into distribution of catalytic activities of enzymes for differ-

ent metabolic states. We utilized COBRA and MASS modeling methodologies to incorporate

omics data into a metabolic reconstruction of E. coli, formulating a kinetic model containing

all microscopic steps for each enzymatic reaction mechanism of the glycolytic subnetwork.

Once formulated, we interrogated the model to examine the shift in thermodynamic driving

force for E. coli on different carbon sources and to compare the activities of different isozymes,

exemplifying the utility of MASSpy.

To construct a kinetic model of the glycolytic subnetwork, we integrated steady-state data

for growth on glucose and pyruvate carbon sources from Gerosa et al. [68] into the iML1515

genome-scale metabolic reconstruction of E. coli K-12 MG1655 [69]. For each carbon source,

we fixed the growth rate for iML1515 and performed FBA using a quadratic programming

objective to compute a flux state that minimized the error between known and computed

fluxes. For the irreversible enzyme pairs of phosphofructokinase/fructose 1,6-bisphosphatase

(PFK/FBP) and pyruvate kinase/phosphoenolpyruvate synthase (PYK/PPS), individual flux

measurements were each increased by 10% of the net flux for the enzyme pair without chang-

ing the overall net flux value to ensure presence of the enzyme as seen in proteomic data [70].

Once flux states were obtained for each carbon source, the glycolytic subnetwork was

extracted from iML1515. Flux units were converted from grams of cellular dry weight into

molar units using volumetric measurements of E. coli obtained from Volkmer and Heinemann

[71], and equilibrium constants obtained from eQuilibrator [72] through component contri-

bution [73] were set for each reaction. Concentration growth data from Gerosa et al. [68] was

integrated into the model and minimally adjusted for thermodynamic feasibility; for metabo-

lites missing concentration data, an initial value of 0.001 M was provided before adjustments

through sampling. Concentrations were sampled within an order of magnitude of their current

value to produce an ensemble of 100 candidate models for each growth condition. Metabolite

sinks were added to the model to account for metabolite exchanges between the modeled sub-

network and the global metabolic network outside of the scope of the model. The relevant

growth data for each carbon source, volumetric measurements, and equilibrium constants are

found in the S1 Data.

For each model in the ensemble, enzyme modules were constructed for each reaction using

a nonlinear parameter fitting package (https://github.com/opencobra/MASSef) and kinetic

data extracted from the literature. Additional isozymes of phosphofructokinase (PFK), fructose

1,6-bisphosphatase (FBP), fructose 1,6-bisphosphate aldolase (FBA), phosphoglycerate mutase

(PGM), and pyruvate kinase (PYK) were also constructed, bringing the total amount of

enzyme modules to 17. Fluxes through individual isozymes were set by splitting the steady

state flux between the major and minor isozyme forms. After integrating all enzyme modules

into the network, each model was simulated to steady state and exported for analysis.

The Gibbs free energy for each enzyme-catalyzed reaction and fractional abundance of each

enzyme form were calculated. Sensitivity analysis of the flux split between the isozyme forms

revealed that the Gibbs free energy and fractional abundance of enzyme forms did not show

significant variation for either carbon source (S1 Fig); therefore, remaining analyses were done

with 75% and 25% of the flux assigned to major and minor isozyme forms, respectively.

PLOS COMPUTATIONAL BIOLOGY MASSpy: Modeling dynamic biological processes in Python

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008208 January 28, 2021 11 / 20

https://github.com/opencobra/MASSef
https://doi.org/10.1371/journal.pcbi.1008208


Comparison of the glucose and pyruvate growth conditions revealed that the free energy of

the reversible reactions remained close to equilibrium, changing from one metabolic state to

another as the thermodynamic driving force shifts according to the carbon source, as seen in

reversible reactions triose phosphate isomerase (TPI), glucose 6-phosphate dehydrogenase

(GAPD), phosphoglycerate kinase (PGK), phosphoglycerate mutase (PGM), and enolase

(ENO) (Fig 4A). The reaction pairs, PFK/FBP and PYK/PPS, maintained their flux directions

to form a futile cycle across conditions.

Fig 4. Comparison of free energy and isozyme fractional abundances for carbon sources. (A) The Gibbs free energy represents the thermodynamic

driving force, shifting the metabolic state depending on the carbon source. (B) The glycolytic subnetwork extracted from E. coli iML1515 consists of 12

reactions represented by the 17 enzyme modules. (C) The fractional abundance for each enzyme form can be computed and compared for the different

isozyme pairs, providing insight into how the catalytic activity is distributed across the isozymes in glucose and pyruvate growth conditions. The

fractional abundances for all enzymes can be found in the supplement (S2 Fig).

https://doi.org/10.1371/journal.pcbi.1008208.g004

PLOS COMPUTATIONAL BIOLOGY MASSpy: Modeling dynamic biological processes in Python

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008208 January 28, 2021 12 / 20

https://doi.org/10.1371/journal.pcbi.1008208.g004
https://doi.org/10.1371/journal.pcbi.1008208


Steady state analysis of the isozyme fractional abundances elucidated a preference for a spe-

cific enzyme state conserved among growth conditions for PFK1, FBA2, and PYK1 (Fig 4C).

Steady state analysis also revealed that the isozyme pairs of PFK, FBP, and PYK primarily

existed in their product-bound form, a reflection of the metabolite concentration levels found

in S2 Data. Specifically, the relatively high concentrations of fructose 1,6-diphosphate (FDP)

observed for glucose growth conditions and of adenosine triphosphate (ATP) observed for

pyruvate growth conditions contributed to significant differences between enzyme product

and reactant concentration levels, creating the conditions favorable to the product-bound

enzyme forms. Both the major and minor PGM isozymes have a similar distribution in their

enzyme forms. The fractional abundance of all enzyme states in the glycolytic subnetwork can

be found in S2 Fig. Through this case study, we have demonstrated that MASSpy can be used

to gain insight into the distribution of functional states for the glycolytic proteome in E. coli
without prior knowledge of enzyme concentrations. See S3 File for all data and scripts associ-

ated with the case study, including microscopic steps and kinetic parameters for all enzyme

modules.

Discussion

We describe MASSpy, a free and open-source software implementation for dynamic modeling

of biological systems. MASSpy expands the COBRApy framework, leveraging existing meth-

ods familiar to COBRA users combined with kinetic modeling methods to form a single, intui-

tive framework for constructing and interrogating dynamic models. In addition to enabling

dynamic simulation, MASSpy contains tools for facilitating the reconstruction and analysis of

enzyme modules, MCMC sampling and ensemble modeling capabilities, interfacing with

packages for pathway visualization (Escher [44]), and exchanging models in SBML format

(libSBML [46]). Taken together, the presentation of the MASSpy software package has several

important implications for practitioners of dynamic metabolic simulation.

MASSpy provides several benefits over existing modeling packages (Table 2). While MASS

models provide an algorithmic approach for generating dynamic models that has already

proven useful in several metabolic studies [24, 26–29], a formal implementation of the MASS

framework has only existed on a commercial software platform (Mathematica). MASSpy pri-

marily utilizes the MASS approach and therefore integrates a suite of tools into its framework

for addressing issues specific to MASS modeling. Unlike other packages for traditional kinetic

modeling, MASSpy incorporates both COBRA methods and MCMC sampling methods for

estimating missing values for several data types. MASSpy’s seamless integration with COBR-

Apy offers a vast array of constraint-based and dynamic modeling tools within a single open-

source framework. Although alternative python-based packages for constraint-based modeling

exist (e.g., PyFBA [2]), the COBRApy package is the most widely used Python package for con-

straint-based modeling by the COBRA community [5]. Furthermore, MASSpy contains

unique capabilities to facilitate the construction and analysis of detailed enzyme modules (i.e.,

microscopic steps), which allow for the dynamics of transient responses to be observed in situ-

ations in which the quasi-steady state and quasi-equilibrium assumptions cannot be applied.

By directly expanding the COBRApy framework for MASSpy, current COBRApy users will

find that MASSpy provides procedures and protocols that they may be familiar with, and

allows members of the COBRA community to directly integrate new tools into their existing

workflows.

The open source nature of Python also enables users to utilize their preferred tools while

integrating MASSpy capabilities, creating workflows suited to their specific needs. For exam-

ple, users familiar with PyBioNetFit [74], PyDREAM [75], or PyMC3 [76] can implement

PLOS COMPUTATIONAL BIOLOGY MASSpy: Modeling dynamic biological processes in Python

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008208 January 28, 2021 13 / 20

https://doi.org/10.1371/journal.pcbi.1008208


these packages for parameter fitting and optimization routines, then update their MASSpy

models with the resulting parameter sets. Through manipulation of data via Pandas [39], a

wide variety of additional interactive statistical visualizations are available through the Altair

visualization package [77], while dynamic network visualizations in iPython notebooks [41,

42] can be accomplished through PyVIPR [78]. By capitalizing on the availability of other sys-

tems biology and data science tools in the Python ecosystem, users maintain the freedom to

use their preferred tools and gain flexibility to determine how MASSpy is be best utilized for

their particular needs.

MASSpy is primarily built for deterministic simulations of a metabolic model and thus may

face limitations for other uses. For example, a package like PySCeS [79] could be utilized to

perform stochastic simulations. Users who often analyze sensitivity may prefer Tellurium and

its implementation of libRoadRunner [45, 80] for explicit support of metabolic control analysis

(MCA) workflows; however, MASSpy does contain similar MCA methods through its own

implementation of libRoadRunner. Other dynamic modeling packages offer certain features

not available in MASSpy, such as a graphical user interface (COPASI [81]) or a rule-based

modeling approach (PySB [82]): see Table 2 for a comparison of MASSpy’s software features

with other existing dynamic modeling packages. MASSpy’s use of SBML facilitates the transfer

of models to other software environments, if desired [53].

Taken together, we have described MASSpy, a Python-based software package for the

reconstruction, simulation, and visualization of dynamic metabolic models. MASSpy provides

a suite of dynamic modeling tools while leveraging existing implementations of constraint-

based modeling tools within a single, unified framework. The case studies presented here vali-

date MASSpy as a modeling tool and demonstrate how the combination of constraint-based

and kinetic modeling features support data-driven solutions for various dynamic modeling

applications. We anticipate that the community will find MASSpy to be a useful tool for

dynamic modeling of metabolism.

Availability and future directions

Software availability and requirements

The source code for MASSpy is available online (https://github.com/SBRG/MASSpy) and in

the S1 File under an MIT license. MASSpy is also hosted as a Python package on the Python

Package Index (https://pypi.org/project/masspy/). All required external dependencies inte-

grated and utilized by MASSpy are also available on the Python Package Index (https://pypi.

org/) and are licensed under their respective licensing terms. Both the Gurobi Optimizer (Gur-

obi Optimization, Houston, TX) and the IBM CPLEX Optimizer (IBM, Armonk, NY) are

freely available for academic use, with solvers and installation instructions found at their

respective websites. Images for Docker containers [43] that include the MASSpy software can

be downloaded online from the DockerHub Registry (https://hub.docker.com/r/sbrg/masspy),

or they can be built locally to include the licensed commercial optimization solvers. Instruc-

tions for MASSpy installation, including instructions for using MASSpy with Docker, are

found in the repository README or in the documentation (https://masspy.readthedocs.io

and S2 File). The data, scripts, and instructions needed to reproduce results of the presented

examples are also available on GitHub (https://github.com/SBRG/MASSpy-publication) and

in the supplement (S3 File).

Documentation

The documentation for MASSpy is available online (https://masspy.readthedocs.io) and in the

S2 File. Good documentation is vital to the adoption and success of a software package; it

PLOS COMPUTATIONAL BIOLOGY MASSpy: Modeling dynamic biological processes in Python

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008208 January 28, 2021 14 / 20

https://github.com/SBRG/MASSpy
https://pypi.org/project/masspy/
https://pypi.org/
https://pypi.org/
https://hub.docker.com/r/sbrg/masspy
https://masspy.readthedocs.io
https://github.com/SBRG/MASSpy-publication
https://masspy.readthedocs.io
https://doi.org/10.1371/journal.pcbi.1008208


should teach new users how to get started while showing more experienced users how to fully

capitalize on the software’s features [5, 83]. For new users, MASSpy provides several simple

tutorials demonstrating the usage of MASSpy’s features and its capabilities. The MASSpy doc-

umentation also contains a growing collection of examples that demonstrate the use of MAS-

Spy, including examples of workflows, advanced visualization tutorials, and in-depth textbook

[29] examples that teach the fundamentals for dynamic modeling of mass action kinetics (S2

File).

Improvements and community outreach

The MASSpy package is designed to provide various dynamic modeling tools for the openCO-

BRA community; therefore a substantial portion of future development for MASSpy will be

tailored toward fulfilling the needs of the COBRA community based on user feedback and fea-

ture requests. New MASSpy releases will utilize GitHub for version control and adhere to

Semantic Versioning guidelines (https://semver.org) in order to inform the community about

the compatibility and scope of improvements. Examples of potential improvements for future

releases of MASSpy include bug fixes, additional SBML compatibility, new import/export for-

mats, support for additional modeling standards, explicit support for additional libRoadRun-

ner simulation capabilities, and implementation of additional algorithms relevant to MASS

modeling approaches. As the systems biology field continues to address challenges in dynamic

models of metabolism, MASSpy will continue to expand its collection of modeling tools to

support data-driven reconstruction and analysis of mechanistic models.

Supporting information

S1 Fig. Sensitivity analysis on flux split through isozymes in the E. coli glycolytic subnet-

work. The Gibbs free energy of enzyme-catalyzed reactions and the fractional abundance for

isozyme states for all isozyme pairs for (A) glucose growth conditions and (B) pyruvate

growth conditions when computing the functional states of the E. coli proteome in the case

study.

(TIF)

S2 Fig. Fractional abundance of all enzyme states in the E. coli glycolytic subnetwork. The

fractional abundance for all enzymes states of all enzyme modules when computing the func-

tional states of the E. coli proteome in the case study.

(TIF)

S1 File. The source code for MASSpy version 0.1.1. The latest version of the MASSpy soft-

ware can be found at https://github.com/SBRG/MASSpy.

(ZIP)

S2 File. The documentation for MASSpy version 0.1.1. The latest version of the MASSpy

documentation can be found at https://masspy.readthedocs.io.

(ZIP)

S3 File. Data, scripts, and instructions to produce presented results. All files necessary to

reproduce the results presented in the validation, ensemble modeling feature demonstration,

and case study. Alternatively, these files can be found at https://github.com/SBRG/MASSpy-

publication.

(ZIP)

S1 Data. Data used to construct the E. coli glycolytic subnetwork. Includes growth data and

volume measurements observed for E. coli growth on glucose and pyruvate media, and

PLOS COMPUTATIONAL BIOLOGY MASSpy: Modeling dynamic biological processes in Python

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008208 January 28, 2021 15 / 20

https://semver.org
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008208.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008208.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008208.s003
https://github.com/SBRG/MASSpy
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008208.s004
https://masspy.readthedocs.io
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008208.s005
https://github.com/SBRG/MASSpy-publication
https://github.com/SBRG/MASSpy-publication
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008208.s006
https://doi.org/10.1371/journal.pcbi.1008208


equilibrium constants from eQuilibrator used in the case study to construct the E. coli glyco-

lytic subnetwork.

(XLSX)

S2 Data. Steady state concentration data in the E. coli glycolytic subnetwork. Includes the

steady state concentration data for all metabolites and enzymes in the E. coli glycolytic subnet-

work in the case study.

(XLSX)

Acknowledgments

The authors gratefully acknowledge: Patrick Phaneuf and Laurence Yang for discussions about

software design considerations during the development of the MASSpy software, Zak King for

help concerning Escher interoperability and general software development, Bin Du for discus-

sions about the implementation of enzyme modules and thermodynamic feasibility features,

Colton Lloyd for discussions about COBRA methods and expanding the COBRApy frame-

work, and the users who provided feedback during the development process for the initial

MASSpy release.

Author Contributions

Conceptualization: James T. Yurkovich, Bernhard O. Palsson.

Data curation: Zachary B. Haiman, Daniel C. Zielinski.

Formal analysis: Zachary B. Haiman, Daniel C. Zielinski.

Funding acquisition: Bernhard O. Palsson.

Investigation: Zachary B. Haiman, Daniel C. Zielinski, Yuko Koike, James T. Yurkovich,

Bernhard O. Palsson.

Methodology: Zachary B. Haiman, Daniel C. Zielinski, Yuko Koike, James T. Yurkovich,

Bernhard O. Palsson.

Project administration: Bernhard O. Palsson.

Resources: Bernhard O. Palsson.

Software: Zachary B. Haiman, Yuko Koike.

Supervision: Daniel C. Zielinski, James T. Yurkovich, Bernhard O. Palsson.

Validation: Zachary B. Haiman.

Visualization: Zachary B. Haiman, Daniel C. Zielinski, James T. Yurkovich.

Writing – original draft: Zachary B. Haiman, Daniel C. Zielinski, Yuko Koike, James T. Yur-

kovich, Bernhard O. Palsson.

Writing – review & editing: Zachary B. Haiman, Daniel C. Zielinski, Yuko Koike, James T.

Yurkovich, Bernhard O. Palsson.

References

1. Jamshidi N, Palsson BØ. Formulating genome-scale kinetic models in the post-genome era. Mol Syst

Biol. 2008; 4:171. https://doi.org/10.1038/msb.2008.8

2. Cuevas DA, Edirisinghe J, Henry CS, Overbeek R, O’Connell TG, Edwards RA. From DNA to FBA:

How to Build Your Own Genome-Scale Metabolic Model. Frontiers in Microbiology. 2016; 7:907.

PLOS COMPUTATIONAL BIOLOGY MASSpy: Modeling dynamic biological processes in Python

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008208 January 28, 2021 16 / 20

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008208.s007
https://doi.org/10.1038/msb.2008.8
https://doi.org/10.1371/journal.pcbi.1008208


3. Gevorgyan A, Bushell ME, Avignone-Rossa C, Kierzek AM. SurreyFBA: a command line tool and

graphics user interface for constraint-based modeling of genome-scale metabolic reaction networks.

Bioinformatics. 2011; 27(3):433–434. https://doi.org/10.1093/bioinformatics/btq679

4. Marmiesse L, Peyraud R, Cottret L. FlexFlux: combining metabolic flux and regulatory network analy-

ses. BMC Systems Biology. 2015; 9(1):93. https://doi.org/10.1186/s12918-015-0238-z

5. Carey MA, Dräger A, Beber ME, Papin JA, Yurkovich JT. Community standards to facilitate develop-

ment and address challenges in metabolic modeling. Molecular Systems Biology. 2020; 16(8):e9235.

6. Edwards JS, Palsson BO. The Escherichia coli MG1655 in silico metabolic genotype: its definition, char-

acteristics, and capabilities. Proc Natl Acad Sci U S A. 2000; 97(10):5528–5533. https://doi.org/10.

1073/pnas.97.10.5528

7. Atala A. Re: Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. J

Urol. 2012; 187(4):1506. https://doi.org/10.1016/j.juro.2011.12.029

8. Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, et al. Metabolic engineering of Escheri-

chia coli for direct production of 1,4-butanediol. Nat Chem Biol. 2011; 7(7):445–452. https://doi.org/10.

1038/nchembio.580 PMID: 21602812

9. Nam H, Lewis NE, Lerman JA, Lee DH, Chang RL, Kim D, et al. Network context and selection in the

evolution to enzyme specificity. Science. 2012; 337(6098):1101–1104. https://doi.org/10.1126/science.

1216861 PMID: 22936779

10. Bordbar A, Palsson BO. Using the reconstructed genome-scale human metabolic network to study

physiology and pathology. J Intern Med. 2012; 271(2):131–141. https://doi.org/10.1111/j.1365-2796.

2011.02494.x

11. Sonnenschein N, Golib Dzib JF, Lesne A, Eilebrecht S, Boulkroun S, Zennaro MC, et al. A network per-

spective on metabolic inconsistency. BMC Syst Biol. 2012; 6:41. https://doi.org/10.1186/1752-0509-6-

41 PMID: 22583819

12. McCloskey D, Palsson BØ, Feist AM. Basic and applied uses of genome-scale metabolic network

reconstructions of Escherichia coli. Mol Syst Biol. 2013; 9:661. https://doi.org/10.1038/msb.2013.18

13. Chang RL, Andrews K, Kim D, Li Z, Godzik A, Palsson BO. Structural systems biology evaluation of

metabolic thermotolerance in Escherichia coli. Science. 2013; 340(6137):1220–1223. https://doi.org/

10.1126/science.1234012

14. Brynildsen MP, Winkler JA, Spina CS, MacDonald IC, Collins JJ. Potentiating antibacterial activity by

predictably enhancing endogenous microbial ROS production. Nat Biotechnol. 2013; 31(2):160–165.

https://doi.org/10.1038/nbt.2458

15. Lewis NE, Nagarajan H, Palsson BO. Constraining the metabolic genotype-phenotype relationship

using a phylogeny of in silico methods. Nat Rev Microbiol. 2012; 10(4):291–305. https://doi.org/10.

1038/nrmicro2737

16. Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A, Heinken A, et al. Creation and analysis of bio-

chemical constraint-based models using the COBRA Toolbox v.3.0. Nat Protoc. 2019; 14(3):639–702.

https://doi.org/10.1038/s41596-018-0098-2 PMID: 30787451

17. Varma A, Palsson BO. Stoichiometric flux balance models quantitatively predict growth and metabolic

by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol. 1994; 60(10):3724–

3731. https://doi.org/10.1128/AEM.60.10.3724-3731.1994

18. Bordbar A, Yurkovich JT, Paglia G, Rolfsson O, Sigurjónsson ÓE, Palsson BO. Elucidating dynamic

metabolic physiology through network integration of quantitative time-course metabolomics. Sci Rep.

2017; 7:46249. https://doi.org/10.1038/srep46249

19. Kleessen S, Irgang S, Klie S, Giavalisco P, Nikoloski Z. Integration of transcriptomics and metabolo-

mics data specifies the metabolic response of Chlamydomonas to rapamycin treatment. Plant J. 2015;

81(5):822–835. https://doi.org/10.1111/tpj.12763

20. Machado D, Costa RS, Ferreira EC, Rocha I, Tidor B. Exploring the gap between dynamic and con-

straint-based models of metabolism. Metab Eng. 2012; 14(2):112–119. https://doi.org/10.1016/j.

ymben.2012.01.003

21. Stanford NJ, Lubitz T, Smallbone K, Klipp E, Mendes P, Liebermeister W. Systematic construction of

kinetic models from genome-scale metabolic networks. PLoS One. 2013; 8(11):e79195. https://doi.org/

10.1371/journal.pone.0079195

22. Tran LM, Rizk ML, Liao JC. Ensemble Modeling of Metabolic Networks. Biophysical Journal. 2008; 95

(12):5606–5617. https://doi.org/10.1529/biophysj.108.135442 PMID: 18820235

23. Liepe J, Barnes C, Cule E, Erguler K, Kirk P, Toni T, et al. ABC-SysBio–approximate Bayesian compu-

tation in Python with GPU support. Bioinformatics. 2010; 26(14):1797–1799. https://doi.org/10.1093/

bioinformatics/btq278 PMID: 20591907

PLOS COMPUTATIONAL BIOLOGY MASSpy: Modeling dynamic biological processes in Python

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008208 January 28, 2021 17 / 20

https://doi.org/10.1093/bioinformatics/btq679
https://doi.org/10.1186/s12918-015-0238-z
https://doi.org/10.1073/pnas.97.10.5528
https://doi.org/10.1073/pnas.97.10.5528
https://doi.org/10.1016/j.juro.2011.12.029
https://doi.org/10.1038/nchembio.580
https://doi.org/10.1038/nchembio.580
http://www.ncbi.nlm.nih.gov/pubmed/21602812
https://doi.org/10.1126/science.1216861
https://doi.org/10.1126/science.1216861
http://www.ncbi.nlm.nih.gov/pubmed/22936779
https://doi.org/10.1111/j.1365-2796.2011.02494.x
https://doi.org/10.1111/j.1365-2796.2011.02494.x
https://doi.org/10.1186/1752-0509-6-41
https://doi.org/10.1186/1752-0509-6-41
http://www.ncbi.nlm.nih.gov/pubmed/22583819
https://doi.org/10.1038/msb.2013.18
https://doi.org/10.1126/science.1234012
https://doi.org/10.1126/science.1234012
https://doi.org/10.1038/nbt.2458
https://doi.org/10.1038/nrmicro2737
https://doi.org/10.1038/nrmicro2737
https://doi.org/10.1038/s41596-018-0098-2
http://www.ncbi.nlm.nih.gov/pubmed/30787451
https://doi.org/10.1128/AEM.60.10.3724-3731.1994
https://doi.org/10.1038/srep46249
https://doi.org/10.1111/tpj.12763
https://doi.org/10.1016/j.ymben.2012.01.003
https://doi.org/10.1016/j.ymben.2012.01.003
https://doi.org/10.1371/journal.pone.0079195
https://doi.org/10.1371/journal.pone.0079195
https://doi.org/10.1529/biophysj.108.135442
http://www.ncbi.nlm.nih.gov/pubmed/18820235
https://doi.org/10.1093/bioinformatics/btq278
https://doi.org/10.1093/bioinformatics/btq278
http://www.ncbi.nlm.nih.gov/pubmed/20591907
https://doi.org/10.1371/journal.pcbi.1008208


24. Yurkovich JT, Alcantar MA, Haiman ZB, Palsson BO. Network-level allosteric effects are elucidated by

detailing how ligand-binding events modulate utilization of catalytic potentials. PLoS Comput Biol. 2018;

14(8):e1006356. https://doi.org/10.1371/journal.pcbi.1006356

25. Chance B, Garfinkel D, Higgins J, Hess B, the technical assistance of E M Chance II W. Metabolic Con-

trol Mechanisms: V. A SOLUTION FOR THE EQUATIONS REPRESENTING INTERACTION

BETWEEN GLYCOLYSIS AND RESPIRATION IN ASCITES TUMOR CELLS. Journal of Biological

Chemistry. 1960; 235(8):2426–2439. https://doi.org/10.1016/S0021-9258(18)64638-1

26. Jamshidi N, Palsson BØ. Mass Action Stoichiometric Simulation Models: Incorporating Kinetics and

Regulation into Stoichiometric Models. Biophysical Journal. 2010; 98(2):175–185. https://doi.org/10.

1016/j.bpj.2009.09.064

27. Du B, Zielinski DC, Kavvas ES, Dräger A, Tan J, Zhang Z, et al. Evaluation of rate law approximations

in bottom-up kinetic models of metabolism. BMC Syst Biol. 2016; 10(1):40. https://doi.org/10.1186/

s12918-016-0283-2 PMID: 27266508

28. Bordbar A, McCloskey D, Zielinski DC, Sonnenschein N, Jamshidi N, Palsson BO. Personalized

Whole-Cell Kinetic Models of Metabolism for Discovery in Genomics and Pharmacodynamics. Cell

Syst. 2015; 1(4):283–292. https://doi.org/10.1016/j.cels.2015.10.003

29. Palsson BØ. Systems Biology: Simulation of Dynamic Network States. Cambridge University Press;

2011.

30. Soo V, Kulikowski C, Garfinkel D, Garfinkel L. Theory formation in postulating enzyme kinetic mecha-

nisms: reasoning with constraints. Computers and biomedical research, an international journal. 1988;

21(4):381–403. https://doi.org/10.1016/0010-4809(88)90052-3

31. Anand, Sonnenschein N. opencobra/MASS-Toolbox: Updated Documentation; 2017. Available from:

https://doi.org/10.5281/zenodo.803492.

32. Ebrahim A, Lerman JA, Palsson BO, Hyduke DR. COBRApy: COnstraints-Based Reconstruction and

Analysis for Python. BMC Syst Biol. 2013; 7:74. https://doi.org/10.1186/1752-0509-7-74

33. Ekmekci B, McAnany CE, Mura C. An Introduction to Programming for Bioscientists: A Python-Based

Primer. PLoS Comput Biol. 2016; 12(6):e1004867. https://doi.org/10.1371/journal.pcbi.1004867

34. Hinsen K. High-Level Scientific Programming with Python. In: Sloot PMA, Hoekstra AG, Tan CJK, Don-

garra JJ, editors. Computational Science—ICCS 2002. Berlin, Heidelberg: Springer Berlin Heidelberg;

2002. p. 691–700.

35. Yurkovich JT, Yurkovich BJ, Dräger A, Palsson BO, King ZA. A Padawan Programmer’s Guide to

Developing Software Libraries. Cell Syst. 2017; 5(5):431–437. https://doi.org/10.1016/j.cels.2017.08.

003

36. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: funda-

mental algorithms for scientific computing in Python. Nat Methods. 2020; 17(3):261–272. https://doi.

org/10.1038/s41592-019-0686-2 PMID: 32015543

37. van der Walt S, Colbert SC, Varoquaux G. The NumPy Array: A Structure for Efficient Numerical Com-

putation. Comput Sci Eng. 2011; 13(2):22–30. https://doi.org/10.1109/MCSE.2011.37

38. Meurer A, Smith CP, Paprocki M,Čertı́k O, Kirpichev SB, Rocklin M, et al. SymPy: symbolic computing

in Python. PeerJ Computer Science. 2017; 3:e103. https://doi.org/10.7717/peerj-cs.103

39. Reback J, McKinney W, jbrockmendel, den Bossche JV, Augspurger T, Cloud P, et al.. pandas-dev/

pandas: Pandas 1.1.3; 2020. Available from: https://doi.org/10.5281/zenodo.4067057.

40. Hunter JD. Matplotlib: A 2D Graphics Environment. Comput Sci Eng. 2007; 9(3):90–95. https://doi.org/

10.1109/MCSE.2007.55

41. Kluyver T, Ragan-Kelley B, Pérez F, Granger BE, Bussonnier M, Frederic J, et al. Jupyter Notebooks—

a publishing format for reproducible computational workflows. In: ELPUB; 2016. p. 87–90.

42. Perez F, Granger BE. IPython: A System for Interactive Scientific Computing. Computing in Science &

Engineering. 2007; 9(3):21–29. https://doi.org/10.1109/MCSE.2007.53

43. Merkel D. Docker: Lightweight Linux Containers for Consistent Development and Deployment. Linux J.

2014; 2014(239).

44. King ZA, Dräger A, Ebrahim A, Sonnenschein N, Lewis NE, Palsson BO. Escher: A Web Application for

Building, Sharing, and Embedding Data-Rich Visualizations of Biological Pathways. PLOS Computa-

tional Biology. 2015; 11(8):1–13.

45. Somogyi ET, Bouteiller JM, Glazier JA, König M, Medley JK, Swat MH, et al. libRoadRunner: a high per-

formance SBML simulation and analysis library. Bioinformatics. 2015; 31(20):3315–3321. https://doi.

org/10.1093/bioinformatics/btv363 PMID: 26085503

46. Bornstein BJ, Keating SM, Jouraku A, Hucka M. LibSBML: an API library for SBML. Bioinformatics.

2008; 24(6):880–881. https://doi.org/10.1093/bioinformatics/btn051

PLOS COMPUTATIONAL BIOLOGY MASSpy: Modeling dynamic biological processes in Python

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008208 January 28, 2021 18 / 20

https://doi.org/10.1371/journal.pcbi.1006356
https://doi.org/10.1016/S0021-9258(18)64638-1
https://doi.org/10.1016/j.bpj.2009.09.064
https://doi.org/10.1016/j.bpj.2009.09.064
https://doi.org/10.1186/s12918-016-0283-2
https://doi.org/10.1186/s12918-016-0283-2
http://www.ncbi.nlm.nih.gov/pubmed/27266508
https://doi.org/10.1016/j.cels.2015.10.003
https://doi.org/10.1016/0010-4809(88)90052-3
https://doi.org/10.5281/zenodo.803492
https://doi.org/10.1186/1752-0509-7-74
https://doi.org/10.1371/journal.pcbi.1004867
https://doi.org/10.1016/j.cels.2017.08.003
https://doi.org/10.1016/j.cels.2017.08.003
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
http://www.ncbi.nlm.nih.gov/pubmed/32015543
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.5281/zenodo.4067057
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1093/bioinformatics/btv363
https://doi.org/10.1093/bioinformatics/btv363
http://www.ncbi.nlm.nih.gov/pubmed/26085503
https://doi.org/10.1093/bioinformatics/btn051
https://doi.org/10.1371/journal.pcbi.1008208


47. Jensen K, G R Cardoso J, Sonnenschein N. Optlang: An algebraic modeling language for mathematical

optimization. JOSS. 2017; 2(9):139. https://doi.org/10.21105/joss.00139

48. Makhorin AO. GNU Linear Programming Kit; 2018.

49. Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, et al. Quantitative prediction of

cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nature Protocols. 2011;

6(9):1290–1307. https://doi.org/10.1038/nprot.2011.308 PMID: 21886097

50. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, et al. The systems biology markup lan-

guage (SBML): a medium for representation and exchange of biochemical network models. Bioinfor-

matics. 2003; 19(4):524–531. https://doi.org/10.1093/bioinformatics/btg015 PMID: 12611808

51. Nowak U, Weimann L. A Family of Newton Codes for Systems of Highly Nonlinear Equations. Konrad-

Zuse-Zentrum für Informationstechnik Berlin, 1991; 1991.

52. Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, Shumaker DE, et al. SUNDIALS: Suite of non-

linear and differential/algebraic equation solvers. ACM Trans Math Softw. 2005; 31(3):363–396. https://

doi.org/10.1145/1089014.1089020

53. Hucka M, Bergmann FT, Hoops S, Keating SM, Sahle S, Schaff JC, et al. The Systems Biology

Markup Language (SBML): Language Specification for Level 3 Version 1 Core. J Integr Bioinform.

2015; 12(2):266. https://doi.org/10.2390/biecoll-jib-2015-266 PMID: 26528564

54. Brett GOlivier FTB. SBML Level 3 Package: Flux Balance Constraints version 2. J Integr Bioinform.

2018; 15(1).

55. Michael Hucka LPS. SBML Level 3 package: Groups, Version 1 Release 1. J Integr Bioinform. 2016;

13(3):290.

56. EMCA International. Standard ECMA-404; 2017.

57. Ulusu NN. Evolution of Enzyme Kinetic Mechanisms. Journal of Molecular Evolution. 2015; 80(5):251–

257.

58. Schellenberger J, Palsson BØ. Use of randomized sampling for analysis of metabolic networks. J Biol

Chem. 2009; 284(9):5457–5461. https://doi.org/10.1074/jbc.R800048200

59. Khodayari A, Zomorrodi AR, Liao JC, Maranas CD. A kinetic model of Escherichia coli core metabolism

satisfying multiple sets of mutant flux data. Metab Eng. 2014; 25:50–62. https://doi.org/10.1016/j.

ymben.2014.05.014

60. Kaufman DE, Smith RL. Direction Choice for Accelerated Convergence in Hit-and-Run Sampling. Oper-

ations Research. 1998; 46(1):84–95. https://doi.org/10.1287/opre.46.1.84

61. Megchelenbrink W, Huynen M, Marchiori E. optGpSampler: an improved tool for uniformly sampling the

solution-space of genome-scale metabolic networks. PLoS One. 2014; 9(2):e86587. https://doi.org/10.

1371/journal.pone.0086587

62. Kümmel A, Panke S, Heinemann M. Putative regulatory sites unraveled by network-embedded thermo-

dynamic analysis of metabolome data. Mol Syst Biol. 2006; 2:2006.0034.

63. Noor E, Bar-Even A, Flamholz A, Reznik E, Liebermeister W, Milo R. Pathway Thermodynamics High-

lights Kinetic Obstacles in Central Metabolism. PLoS Comput Biol. 2014; 10(2):e1003483. https://doi.

org/10.1371/journal.pcbi.1003483

64. Tan Y, Liao JC. Metabolic ensemble modeling for strain engineers. Biotechnol J. 2012; 7(3):343–353.

https://doi.org/10.1002/biot.201100186

65. Bordbar A, Lewis NE, Schellenberger J, Palsson BØ, Jamshidi N. Insight into human alveolar macro-

phage and M. tuberculosis interactions via metabolic reconstructions. Molecular Systems Biology.

2010; 6(1):422. https://doi.org/10.1038/msb.2010.68

66. Wan J, Ristenpart WD, Stone HA. Dynamics of shear-induced ATP release from red blood cells. Proc

Natl Acad Sci U S A. 2008; 105(43):16432–16437. https://doi.org/10.1073/pnas.0805779105

67. Conn AR, Gould NIM, Toint PL. Trust Region Methods. Society for Industrial and Applied Mathematics;

2000. Available from: https://epubs.siam.org/doi/abs/10.1137/1.9780898719857.

68. Gerosa L, Haverkorn van Rijsewijk BRB, Christodoulou D, Kochanowski K, Schmidt TSB, Noor E, et al.

Pseudo-transition Analysis Identifies the Key Regulators of Dynamic Metabolic Adaptations from

Steady-State Data. Cell Syst. 2015; 1(4):270–282. https://doi.org/10.1016/j.cels.2015.09.008 PMID:

27136056

69. Monk JM, Lloyd CJ, Brunk E, Mih N, Sastry A, King Z, et al. i ML1515, a knowledgebase that computes

Escherichia coli traits. Nat Biotechnol. 2017; 35(10):904–908. https://doi.org/10.1038/nbt.3956 PMID:

29020004

70. Schmidt A, Kochanowski K, Vedelaar S, Ahrné E, Volkmer B, Callipo L, et al. The quantitative and con-

dition-dependent Escherichia coli proteome. Nat Biotechnol. 2016; 34(1):104–110. https://doi.org/10.

1038/nbt.3418 PMID: 26641532

PLOS COMPUTATIONAL BIOLOGY MASSpy: Modeling dynamic biological processes in Python

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008208 January 28, 2021 19 / 20

https://doi.org/10.21105/joss.00139
https://doi.org/10.1038/nprot.2011.308
http://www.ncbi.nlm.nih.gov/pubmed/21886097
https://doi.org/10.1093/bioinformatics/btg015
http://www.ncbi.nlm.nih.gov/pubmed/12611808
https://doi.org/10.1145/1089014.1089020
https://doi.org/10.1145/1089014.1089020
https://doi.org/10.2390/biecoll-jib-2015-266
http://www.ncbi.nlm.nih.gov/pubmed/26528564
https://doi.org/10.1074/jbc.R800048200
https://doi.org/10.1016/j.ymben.2014.05.014
https://doi.org/10.1016/j.ymben.2014.05.014
https://doi.org/10.1287/opre.46.1.84
https://doi.org/10.1371/journal.pone.0086587
https://doi.org/10.1371/journal.pone.0086587
https://doi.org/10.1371/journal.pcbi.1003483
https://doi.org/10.1371/journal.pcbi.1003483
https://doi.org/10.1002/biot.201100186
https://doi.org/10.1038/msb.2010.68
https://doi.org/10.1073/pnas.0805779105
https://epubs.siam.org/doi/abs/10.1137/1.9780898719857
https://doi.org/10.1016/j.cels.2015.09.008
http://www.ncbi.nlm.nih.gov/pubmed/27136056
https://doi.org/10.1038/nbt.3956
http://www.ncbi.nlm.nih.gov/pubmed/29020004
https://doi.org/10.1038/nbt.3418
https://doi.org/10.1038/nbt.3418
http://www.ncbi.nlm.nih.gov/pubmed/26641532
https://doi.org/10.1371/journal.pcbi.1008208


71. Volkmer B, Heinemann M. Condition-dependent cell volume and concentration of Escherichia coli to

facilitate data conversion for systems biology modeling. PLoS One. 2011; 6(7):e23126. https://doi.org/

10.1371/journal.pone.0023126

72. Flamholz A, Noor E, Bar-Even A, Milo R. eQuilibrator—the biochemical thermodynamics calculator.

Nucleic Acids Research. 2012; 40(D1):D770–D775. https://doi.org/10.1093/nar/gkr874

73. Noor E, Haraldsdóttir HS, Milo R, Fleming RMT. Consistent estimation of Gibbs energy using compo-

nent contributions. PLoS Comput Biol. 2013; 9(7):e1003098. https://doi.org/10.1371/journal.pcbi.

1003098

74. Mitra ED, Suderman R, Colvin J, Ionkov A, Hu A, Sauro HM, et al. PyBioNetFit and the Biological Prop-

erty Specification Language. iScience. 2019; 19:1012–1036. https://doi.org/10.1016/j.isci.2019.08.045

PMID: 31522114

75. Shockley EM, Vrugt JA, Lopez CF. PyDREAM: high-dimensional parameter inference for biological

models in python. Bioinformatics (Oxford, England). 2018; 34(4):695–697. https://doi.org/10.1093/

bioinformatics/btx626

76. Salvatier J, Wiecki TV, Fonnesbeck C. Probabilistic programming in Python using PyMC3. PeerJ Com-

puter Science. 2016; 2:e55. https://doi.org/10.7717/peerj-cs.55

77. VanderPlas J, Granger B, Heer J, Moritz D, Wongsuphasawat K, Satyanarayan A, et al. Altair: Interac-

tive Statistical Visualizations for Python. Journal of Open Source Software. 2018; 3(32):1057. https://

doi.org/10.21105/joss.01057

78. Ortega OO, Lopez CF. Interactive Multiresolution Visualization of Cellular Network Processes.

iScience. 2020; 23(1). https://doi.org/10.1016/j.isci.2019.100748 PMID: 31884165

79. Olivier BG, Rohwer JM, Hofmeyr JHS. Modelling cellular systems with PySCeS. Bioinformatics. 2005;

21(4):560–561. https://doi.org/10.1093/bioinformatics/bti046

80. Choi K, Medley JK, König M, Stocking K, Smith L, Gu S, et al. Tellurium: An extensible python-based

modeling environment for systems and synthetic biology. Biosystems. 2018; 171:74–79. https://doi.org/

10.1016/j.biosystems.2018.07.006 PMID: 30053414

81. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, et al. COPASI—a COmplex PAthway SImula-

tor. Bioinformatics. 2006; 22(24):3067–3074. https://doi.org/10.1093/bioinformatics/btl485 PMID:

17032683

82. Lopez CF, Muhlich JL, Bachman JA, Sorger PK. Programming biological models in Python using PySB.

Mol Syst Biol. 2013; 9:646. https://doi.org/10.1038/msb.2013.1

83. Prlić A, Procter JB. Ten simple rules for the open development of scientific software. PLoS Comput Biol.

2012; 8(12):e1002802. https://doi.org/10.1371/journal.pcbi.1002802

PLOS COMPUTATIONAL BIOLOGY MASSpy: Modeling dynamic biological processes in Python

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008208 January 28, 2021 20 / 20

https://doi.org/10.1371/journal.pone.0023126
https://doi.org/10.1371/journal.pone.0023126
https://doi.org/10.1093/nar/gkr874
https://doi.org/10.1371/journal.pcbi.1003098
https://doi.org/10.1371/journal.pcbi.1003098
https://doi.org/10.1016/j.isci.2019.08.045
http://www.ncbi.nlm.nih.gov/pubmed/31522114
https://doi.org/10.1093/bioinformatics/btx626
https://doi.org/10.1093/bioinformatics/btx626
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.21105/joss.01057
https://doi.org/10.21105/joss.01057
https://doi.org/10.1016/j.isci.2019.100748
http://www.ncbi.nlm.nih.gov/pubmed/31884165
https://doi.org/10.1093/bioinformatics/bti046
https://doi.org/10.1016/j.biosystems.2018.07.006
https://doi.org/10.1016/j.biosystems.2018.07.006
http://www.ncbi.nlm.nih.gov/pubmed/30053414
https://doi.org/10.1093/bioinformatics/btl485
http://www.ncbi.nlm.nih.gov/pubmed/17032683
https://doi.org/10.1038/msb.2013.1
https://doi.org/10.1371/journal.pcbi.1002802
https://doi.org/10.1371/journal.pcbi.1008208

