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Abstract: The discovery and characterization of transposable element (TE) families are crucial tasks
in the process of genome annotation. Careful curation of TE libraries for each organism is necessary
as each has been exposed to a unique and often complex set of TE families. De novo methods have
been developed; however, a fully automated and accurate approach to the development of complete
libraries remains elusive. In this review, we cover established methods and recent developments in
de novo TE analysis. We also present various methodologies used to assess these tools and discuss
opportunities for further advancement of the field.

Keywords: repeats; transposon; transposable element; de novo methods; signature-based methods;
genome annotation; curation

1. Introduction

Genomes have likely always battled with subsequences that evolved to multiply
independently of genome replication. For billions of years, these transposable elements
(TEs) have littered genomes with interspersed copies that are generally detrimental or
useless for their hosts and thus tend to wither away over time. Depending on the relative
rate of TE reproduction and genomic clean-up through random deletions, significant
fractions of present genomes are ultimately derived from TEs. Recognized portions are as
high as 84% in some cereals and 90% in lungfish [1–3]. Since 1980, it has been suggested
that most of the 85–90% of our own genome that is not under functional constraint is TE
derived [4]; and by 1996, we could confirm that for almost half the genome [5]. Because
of relatively low TE activity and DNA loss, much of our and other vertebrate TE-derived
DNA was introduced a long time ago and, through the accumulation of mutations, ranges
from difficult to impossible to recognize as such. Over half of the human DNA recognizably
derived from (~4 million) TE insertions became part of our genome over 80 million years
ago, in a common ancestor of all placental mammals [6,7].

While the persistent onslaught of TEs has been a bane for genomes, as evidenced by
the many and wide-ranging defense mechanisms they evolved against them, it forms a
veritable boon for phylogenetic research. The advantages of TE insertions as a phylogenetic
tool include their high abundance and interspersed distribution, the near-neutral nature
of most insertions fixed in a population, the built-in knowledge of the ancestral (absent)
state, the virtual absence of back-mutations or parallel events leading to the same sequence
pattern (homoplasy), and our ability to recognize ancient events [8]. Not all TEs are equally
suitable; less reliable are class II elements that excise from their locus during transposition
or elements with more specific target site preferences. Most LINE elements, such as L1
in mammals and CR1 in birds, are close to ideal: random 5′ truncation of most insertions
and the variable target site duplication (TSD) lengths distinguish even the rare event of
same-site insertions in the same orientation in related genomes.

These qualities of TE insertions have been used with great aplomb to resolve long-
standing phylogenetic problems before the availability of complete genome data [9–13].
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Genome assemblies for most vertebrates and many other eukaryotes are being rapidly
produced and can increasingly be studied in the context of complete and reliable multi-
species genome alignments [14–17]. One could expect that the rich detail contained in
whole-genome alignments would be more reliable in phylogenetic studies and that the role
of TEs in phylogenetic studies will steadily decline, but they will always remain relevant
in population studies and may even continue to be the best tool to resolve the trickiest
phylogenies, such as species radiations. For these, individual markers show conflicting
species trees because two or more speciation events took place when the loci were still
polymorphic (incomplete lineage sorting) or due to interspecific gene flow (introgression),
primarily via hybridization. Quartet-based summary coalescent methods have the potential
to solve these knots when using TE insertions as input data [18,19]. For this to work, it is
critical that the ancestral and derived loci are always correctly called, which is dependent
on solid repeat annotation with full-length reconstructed TEs and knowledge of insertion
behavior, and that the number of phylogenetic markers is high [20]. For phylogenetic
purposes, the best product of de novo programs therefore is an as complete as possible
library of reconstructed TEs, for anything but the youngest elements best presented by
consensus sequences or profile HMMs.

TE libraries for the first sequenced genomes were years in the making and the need for
automation was apparent early on, especially because the number of sequenced species was
expected to grow exponentially. Indeed, in March 2021, the International Nucleotide Sequence
Database Collaboration contained genome assemblies for 6480 unique species [21], including
higher-quality assemblies for approximately 3300 animal and 800 plant species [22,23]. This is
a small fraction of what awaits, with, for example, the Vertebrate Genomes Project aiming to
generate complete reference genomes for all ~70,000 extant vertebrates [24] and the Darwin
Tree of Life Project planning the same for all ~73,000 eukaryotic species in the UK [25]. These
and many other such efforts are coordinated by the Earth BioGenome project to sequence all
organisms in the forthcoming decade [21].

Earlier brute force TE library building efforts somewhat simplify repeat analysis in
tetrapod genomes, as many ancient repeats are shared between these species and the
general nature of the TE fauna is familiar. For most organisms, however, the vast majority
of TE copies are lineage specific; a library has to be built from scratch and may contain
heretofore unknown elements with their own idiosyncratic challenges.

Early in the 2000s, automation was addressed by a number of labs who developed
programs such as RepeatFinder [26], REPuter [27], RECON [28], RepeatScout [29] and
PILER [30] that are still in use today. We released an automated version of part of our
own pipeline (RepeatModeler) in 2008 and new methods have been introduced steadily, to
the point that prospective repeat analysts may be overwhelmed by the choices. Here, we
provide an overview of the popular or promising new methods and pipelines to identify
interspersed repeats de novo. We do not address the analysis of tandem repeats and satellites;
the most recent reviews on this that we are aware of are from 2013 and 2015 [31,32] and
quite a few promising newer methods have been published since [33–37]. The analysis
of segmental duplications, which has seen considerable progress in recent years [38–40]
also falls outside the scope of this review, though one should be aware of their existence as
they can interfere with the discovery and analysis of TE families. We also do not address
the genotyping of TE insertions compared to a reference genome (see reviews [41,42]) and
more recently published tools [43–45].

Several reviews on the subject of de novo TE analysis have been written in the last dozen
years [46–50]. We especially recommend the broader review by Nicolas and colleagues,
originally written in 2016 and updated this year [51], which contains excellent introductions
to the concepts of sequence indexing and their application to repeat detection. In addition,
a comprehensive list of tools for TE analysis is currently being maintained as part of the
TEHub project (http://tehub.org; accessed on 16 April 2022). Our focus will be on a
comparison of the methodology of the most commonly used programs, the different ways
the programs present the results, the need for a standard benchmark to meaningfully
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compare results of different programs, and some open problems that none of the programs
have truly solved.

2. Why Is De novo Repeat Analysis So Hard?

At first thought, identification of interspersed repeats and subsequent calculation
of a consensus sequence approximating the original TE appear straightforward. If most
instances of TE copies have decayed in a neutral fashion, the accumulation of substitutions
and indels should be random and with some knowledge of neutral mutation patterns,
expectations can be set for what are likely dispersed copies of the same element instead of
chance similarities. With enough copies, a reconstruction of the mobile element should be
straightforward, but many complications exist.

While neutral decay provides advantages for repeat detection, the lack of selective
constraint means that structural signals of TEs perish as quickly as any other sequence.
Thus, a translational comparison or a search for characteristic terminal sequences does not
increase sensitivity (quite the opposite).

The size of the genome can interfere with the detection of older and/or lower copy
number elements. If TE instances have undergone 20% substitutions since arrival (an exam-
ple of these are TE copies that arrived in the mouse genome at the time of speciation from
hamsters), the distance between any two instances is on average 40%. Detecting matches
of such a high divergence level requires very sensitive settings in self-comparison of the
genome, making the process impractically slow. To allow more sensitive self-comparison,
programs could work with smaller samples of a genome, but lower copy number elements
may then go unnoticed.

Extensive fragmentation creates a challenge for algorithms to find the true ends of the
TE. Older TE instances tend to be highly fragmented, either through partial deletions or
through interruption by insertions, usually of other TEs. In many species, TE copies mostly
accumulate in defined heterochromatic, gene-poor or intergenic regions of the genome,
in part because their impact is more likely to be neutral. In those regions, overall repeat
density can approach 100% of densely nested TE insertions [52,53]. On top of this, some
elements tend to be truncated upon insertion. This is particularly so for LINEs, a class of
elements that make up the majority of repeats in many vertebrates.

To make things worse, full-length insertions are less likely to occur or persist than frag-
ments, impeding their reconstruction. This can happen during transposition: cut and paste
DNA transposons with an internal deletion appear to have an advantage over full, coding
elements, perhaps because the transposase has a better chance binding to both termini. The
ratio of short elements over full copies can be very high, hampering reconstruction of the
long element. Often, the activity of a DNA transposon is only evidenced by the presence of
tiny elements with terminal inverted repeats (TIRs) [54,55]. Autonomous elements with
long terminal repeats (LTRs) may be outnumbered by elements with a reduced internal
sequence [56,57] and LINE elements sometimes give free rides to internal deletion prod-
ucts [58]. Long insertions are also more likely to be selectively disadvantageous to the
genome. Severely truncated LINE insertions are thus more likely to be fixed. For the same
reason, full-length LTR elements are often reduced to solo LTRs via LTR–LTR recombination
and the internal sequences of many LTR elements remain unknown.

Whereas the original sequence of most class II elements can be precisely reconstructed,
class I elements evolve in a genome and the differences between instances are a mixture
of neutral mutations accumulated in the fixed copies and evolved changes in the source
gene(s). A consensus sequence of such families may not match any state of the evolving TE
precisely. Over time, class I TEs can change to the point that homology between old and
young copies or between copies of two branches is obscure. De novo algorithms will not
consider these dissimilar copies to represent the same TE family. This is usually preferable,
as a consensus or profile HMM sequence model of these aligned yet dissimilar sequences
could be meaningless. Instead, several models will be built that represent often partially
and sometimes wholly overlapping sets of instances of the evolving TE. Proper clustering
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of the instances is complicated, even if sometimes aided by apparent bursts of activity of
the TE, resulting in clear “subfamilies” of instances. None of the de novo programs currently
attempt an automated subfamily analysis.

Regional homology can exist between otherwise unrelated TEs, further complicating
defining the true edges of a TE as well as its classification. These regional similarities
have multiple origins. (1) A (fragment of a) TE could insert in or be recombined into an
active other element. Some TEs, such as Helitrons and non-autonomous LTR elements,
are particularly impartial to foreign intrusions. The anomalous L1-dependent SVA and
LAVA elements active in ape genomes harbor Alu fragments, a retroviral LTR and a low
complexity tandem repeat; had their copies been ancient and highly mutated, they would
have been painful to reconstruct and classify. (2) Different elements may use the same
functional module. The best examples of this phenomenon are probably SINEs. Classical
SINEs originate by the happenstance recombination of a small structural RNA, containing
an internal pol III promoter, and the 3′ end of a LINE element, which lets them hitch a
ride with the latter. (3) Recombination between active TEs is a common feature. This is
especially true for LTR elements, where disparate RNAs can be packaged in the same
viral particle and template switching of the reverse transcriptase between the two RNA
genomes is required for normal replication. Through this mechanism, chimeric-looking
LTRs originate, identical LTRs can flank entirely different internal sequences (and vice
versa) and integrases of one class of ERVs can even be combined with reverse transcriptases
of another [59].

Besides these true recombinant mobile elements, de novo programs are also prone to
build in silico chimeras of TEs, in part because integration site preferences of prolific TEs
can make them frequently appear in tandem or at the (near) same site of other interspersed
repeats. For instance, in mammals, L1-dependent SINEs insert in A-rich regions, most
frequently provided by the poly-A tail of other SINEs. Because such incidental pairs can
become a successful TE, the dimeric primate Alus being a prime example, they cannot be
dismissed offhand.

Perhaps in part due to the frequency of tandem copies mentioned above, TE instances
appear overrepresented in satellite-like tandem repeats [60]. Co-duplication of a TE instance
such as that or along with segmental duplications can obfuscate its true extend. Given
enough such copies and a significant decay from the original sequence, the model for the
TE may become distorted as well. On top of that, de novo programs often build models
of higher copy number segmental duplications or large tandem repeats as putative TE
families. Being “random” fragments of the genome, these models may include coding
regions of cellular genes and other unintended sequences. They usually contain copies of
TEs and may prevent the discovery of some of these.

Until recently, known eukaryotic TEs ranged in size from 80 bp to approximately
15 kb. Unfortunately, oversized transposable units have now come to light in non-model
organisms. These include members of known classes, such as 30 kb LTR elements in
planarians, as well as exotic new TEs, such as the up to 180 kb Teratorns in fish [61]. These
are a problem for TE class-specific programs, which necessarily impose size limitations,
and tend to be fragmented by general de novo programs.

Finally, given the low information density present in a four-nucleotide alphabet, low
complexity is the common source of false positives in the initial search for repetitive signals,
false confidence in alignments of non-homologous sequences, and false extensions of
real matches. This is of course particularly problematic for genomes with extreme GC
content, but low-complexity problems can arise in subtler ways. De novo-created libraries
almost always contain models representing common (degraded) simple repeats flanked by
unrelated DNA of merely similar composition. Mini-satellites with the same periodicity
and just a few bases in common will align “significantly” with each other in the long run
and will show up as well.
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3. Approaches to TE Discovery and Annotation

The complex nature of TE sequence analysis is reflected in the often-ambiguous usage
of terms such as “discovery” and “annotation”. It has been useful to define TE discovery as
the process of reconstructing/modeling TE families directly from sequence data to generate
or augment a TE library. Similarly, TE genome annotation can be viewed as the process
of identifying and characterizing all recognizable instances of a TE family or a set of TE
families in a genome. The large spectrum of methodologies developed for these tasks
over the past two decades has blurred the lines between strict discovery and annotation
processes. For this reason, we will focus on characterizing the granularity of results; from
methods producing sequence ranges labeled simply as repetitive in nature to methods that
produce complete family models and genome annotations.

A further distinction is often made between methods which: (1) discover TE families
based on general principles such as subsequence repetition/locality (de novo/ab initio
methods); (2) employ domain knowledge to detect signatures of known TE class activ-
ity/composition (signature-based methods); and (3) methods that produce highly detailed
genome annotation of TE instances and depend entirely on a predefined library of TE
family models (library-based methods) (Figure 1). De novo and signature-based methods
are typically employed to generate the input for library-based methods and will be the
focus of this review.
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Figure 1. Spectrum of methodologies for the discovery of TE sequences.

The results of a de novo analysis come in a dizzying array of forms and granularity.
Tools that provide genome annotations (marked with “Annotation Generation” in our soft-
ware tables) may only separate a sequence into repetitive and non-repetitive subsequences,
may report pairwise associations between repetitive subsequences, may group repetitive
regions by broad TE classifications (e.g., LTRs and MITEs), or may rigorously report on
distinct instances of clustered TE families. Tools falling into the last category typically also
generate a library of sequence models for each family that has been discovered. These may
take the form of consensus sequences, or representative instance(s) chosen from each family
(exemplars). Furthermore, some programs provide provenance for the family definition
in the form of sequence ranges for the identified family instances or a multiple sequence
alignment of family instances (seed alignment).

4. De novo Methodologies

De novo methods have the advantage over signature-based methods that they can
identify families that do not belong to a known class of TE or do not share one or more of
the diagnostic features signature-based methods employ. They work by detecting exact
or closely matching sequence repetitions, extending these matches, and in some cases
grouping them into families of related sequences. In Table 1, de novo tools are characterized
by the level of granularity they produce (families, instances, other), and by the types of
family models produced (consensi, exemplars, or other tool-specific representations).
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Table 1. De novo methods.

Granularity Library Generation

Tool Approach Input Families,
Instances or

Other C
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Ref.

CARP Self-comparison, clustering Assembly Families x x x [62]

dnaPipeTE Read sampling and
assembly NGS reads Families x x [63]

LongRepMarker Pre-assembly, k-mer
coverage

SMS/NGS
reads, or
assembly

Instances x [64]

mer-engine K-mer Assembly Other: k-mer
counts x [65]

P-Clouds K-mer Assembly Other: k-mer
clusters x x [66]

phRAIDER Spaced k-mer Assembly Families x x [67]
RAP Spaced k-mer Assembly Instances x [68]
ReAS Read k-mer seed and extend Reads Families x [69]

RECON Self-comparison, clustering Assembly Families x x [28]

RED K-mer, supervised learning Reads, or
assembly Instances x [70]

RepAHR Read filtering, and assembly NGS reads Families x x [71]
RepARK K-mer assembly NGS reads Families x [72]

REPdenovo K-mer assembly, contig
assembly NGS reads Families x [73]

RepeatExplorer2 Read sampling, clustering
and assembly NGS reads Families x x [74]

RepeatFinder MEMs Assembly Families x x [26]

RepeatScout K-mer seeded multiple
alignment Assembly Families x [29]

RepLong Read clustering and
assembly SMS reads Families x [75]

TE_finder Self-comparison, clustering Assembly Families x [76]
Tedna K-mer, de-bruijn graph NGS reads Families x [77]

Vmatch/REPuter MEMs Assembly Other: repeat
pairs x [27]

WindowMasker K-mer Assembly Instances x [78]

De novo methods that process whole-genome assemblies typically employ a self-comparison
or (spaced) k-mer seeding approach. K-mer approaches identify over-represented exact k-
length subsequences (k-mers) or k-length subsequences with a fixed pattern of match/mismatch
positions (spaced k-mers) in an input sequence (Figure 2). These k-mer counts may be simply
reported at every position (mer-engine), or thresholded to identify ranges of repetitive se-
quences (RAP, WindowMasker). The RED tool first identifies repetitive regions using spaced
k-mer abundance, trains a classifier on these regions, and finally uses the classifier to annotate
the genome. phRAIDER tiles spaced k-mers into maximal approximate matches (MAMs)
identifying families of approximate repeats without indels. RepeatScout identifies abundant
k-mers and employs them as seeds for a multiple sequence alignment extension and consensus
generation. Finally, P-Clouds takes a statistical approach to cluster the k-mers with sequence
overlap into groups (clouds). Regions showing significant coverage by k-mers present in one
cloud are then considered repetitive and are annotated with that cloud.
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Figure 2. K-mer-based approaches on sequence assemblies. Upon characterizing the k-mer composition
of the assembly, the word counts are either: simply used to annotate each base of the sequence (mer-
engine), used to discriminate regions of high repetitiveness (RAP, WindowMasker, RED), clustered
(P-Clouds), or used as anchors in a seed and extension process (RepeatScout, phRAIDER, RepSeek).

Self-comparison approaches identify repetitive regions using computationally inten-
sive alignment algorithms (Figure 3) followed by clustering strategies to resolve TE families
from the pairwise alignment data. Accurate clustering of these alignments is challenging
due to high fragmentation and mosaicism present in TE families. Grouper approaches this
problem by applying single-linkage clustering, an agglomerative clustering technique that
merges two clusters based on the shortest distance between any two members. RECON
first applies single-linkage clustering, and then evaluates significant groupings of sequence
endpoints within these clusters to identify composite sequences which are split apart ac-
cordingly. PILER uses several independent clustering approaches to identify tandem, local,
and interspersed repeats from self-comparison alignment data. The interspersed repeat
PILER method is also used in the CARP tool. It identifies clusters of aligned sequences that
can be considered globally alignable.

Many de novo methods have been developed that directly operate on next-generation
sequencing (NGS) or single-molecule sequencing (SMS) reads. The primary advantage
of this approach is to avoid assembler biases that often cause low-divergence repetitive
sequences to be mis-assembled or left out entirely. The predominant approaches (Figure 4)
attempt to treat repetitive sequence reads as a special case of sequence assembly or employ
clustering methods to group reads/k-mers directly into repetitive families. In both cases,
reads enriched for repetitive sequences are obtained either by downsampling the read
dataset (to 0.1–0.5x coverage) or by filtering reads composed mostly of low-frequency
k-mers. A few methods apply the assembly/clustering strategies directly to the k-mers
rather than the reads.
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Figure 3. Self-comparison approaches. These methods attempt an all-vs.-all self-alignment using
the whole assembly or a portion thereof. The self-alignments, viewed as a dot plot, will have many
off-diagonal alignments representing dispersed similarities. These methods group the alignments
into “piles”, defined by their distinct coverage across a region of the assembly. The primary difference
between methods is in how they group piles into families. PILER and CARP require that elements
are globally alignable, thereby identifying R1/R3 as a distinct family rather than fragments. Grouper
and RECON apply single-linkage clustering, which, in this example, groups all fragments into a
single family. RECON further attempts to identify composite families by looking for overrepresented
internal edges—in this example, the internal edges were not deemed significant (red x’s).
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Figure 4. Read-based de novo methodologies. Due to the overwhelming size of read datasets,
methods often start by either downsampling or filtering low-coverage regions based upon read k-mer
frequencies. At this stage, either the remaining reads or the k-mers themselves are assembled into
contigs or clustered into distinct groups representing repetitive families.

5. Signature-Based Methodologies

Purely de novo methods should be able to detect all classes of TE families. However,
detecting TEs by sequence repetition alone has the potential to miss low-copy or certainly
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single-copy members of any well-characterized class of TEs and leads to the inclusion of
non-TE sequences, such as processed pseudogenes and high-copy gene families. Without
expectations regarding the structure of mobile elements, these methods also produce many
fragmented or overextended TE models. LTR elements are particularly vulnerable to
this, and the output of de novo programs may contain (fragments of) solo LTRs, single
LTRs with a fragment of an internal sequence on either or both sides, all the way up to
LTR-int-LTR-int-LTR structures. Signature-based methods are less susceptible to these
particular problems.

Signature-based methods (Table 2) identify TE instances (Figure 5) by recognizing
features of specific classes of TEs (terminal inverted repeats, direct repeats, transcription
factor binding sites, protein motifs, etc.) as well as hallmarks of TE insertions, such as
target site duplications. Often, several features must be used in concert to overcome the
low specificity of each; even still, signature-based methods typically suffer from high
false-positive rates.

Table 2. Signature-based methods.

Granularity Library Generation
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TESeeker Protein-coding TEs Homology based. Families x [79]

Generic
Repeat
Finder

TIR, LTR,
Interspersed

Complex-number sequence
encoding/comparison.

Identifies direct/inverted
repeats with low-frequency

indels and mismatches.

Families x x x [80]

ReDoSt DIRS Homology detection to RT,
MT and YR protein domains. Instances x [81]

DARTS LTR

Homology detection to
TE-specific subset of the NCBI
CDD database. LTR detection

and clustering of families.

Families x x [82]

LTR_FINDER LTR

Suffix array seed and chain
strategy for locating intact
LTRs. Further validation of

TG . . . CA box, PBS, TSR and
RT domains.

Instances x [83]

LTR_par LTR

Suffix array for finding MEMs
within a constrained distance

followed by flanking seq
alignment. TSR and TG...CA

box validation.

Instances x [84]

LTR_STRUC LTR Greedy alignment extension of
inexact sequence matches. Instances x [85]

LtrDetector LTR

Nearest k-mer pair distances
are chained into LTR pairs.

Filters pairs that exhibit TIRs.
Validates TSD, TG...CA box,

and PPT.

Instances x [86]
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LTRdigest LTR

De novo result polisher that
identifies PPT, PBS, protein

domains. Feature-based
clustering of results into

groups.

Families x x [87]

LTRharvest LTR

Enhanced suffix array for
finding MEMs seeds, followed

by alignment extension.
Validated by distance

constraints and by presence of
TSD.

Instances x [88]

TE-
Learner LTR

Detection using homology to
known LTR proteins followed

by a machine learning
approach for the classification

of LTR results.

Instances x [89]

MGEScan LTR/LINE

LTR identification using suffix
array, followed by protein

domain validation, and
clustering into families.

Non-LTR identification using
RT/APE signal detection and

12-way classifier based on
detailed protein domain

structure.

Instances x [90]

RetroTector LTR/ERV

Identifies candidates using a
set of enriched ERV hexamers.

Identifies poly-A, R-U5 and
many other characterized
motifs and validates their

relative positions.

Instances x [91]

SINE_Scan SINE

An enhanced SINE-Finder
polisher that looks for matches
to tRNA, 7SLRNA and 5SRNA
as well as locates TSDs, poly-A
regions. Filters common false
positives matching LTR/TIR
results and/or not repetitive

in the genome.

Families x x [92]

SINE-
Finder SINE

Identifies SINES by scanning
for patterns matching: TSD,
Box A/B motifs, poly-A and

appropriate spacers.

Instances x [93]

EAHelitron Helitron

Identify helitrons by looking
for matches to: TC . . . CTAG
termini containing a GC-rich

hairpin structure

Instances x [94]



Genes 2022, 13, 709 11 of 23

Table 2. Cont.

Granularity Library Generation

Tool Repeat Types/Classes Approach Families,
Instances or

Other C
on

se
ns

i

Ex
em

pl
ar

s

O
th

er

Pr
ov

en
an

ce

A
nn

ot
at

io
n

Ref.

HelitronScanner Helitron
Identifies terminal structures

using a set of local
combinational variables.

Instances x [95]

MITE-
Hunter TIR/MITE

Identifies TIR and TSDs,
clusters sequences into

families through MSA, able to
discover other short

non-autonomous Class 2 TEs.

Families x x [96]

TIR-
Finder TIR/MITE

Suffix tree approach to finding
specific or arbitrary TIR/TSDs

patterns allowing for
mismatches.

Instances x [97]

MITE
Digger TIR/MITE

Identifies TIR and TSDs
iteratively using

self-comparison and masking
of discovered families.

Families x x [98]

detectMITE TIR/MITE

Complex-number scoring and
comparison of subsequences

can detect TIRs with
mismatches only. Lempel-Ziv

filter for low complexity
sequences. CD-HIT clustering

for family detection.

Families x x [99]

MiteFinderII TIR/MITE

K-mer search for
identical/imperfect TIRs.

Merged k-mers are filtered for
low complexity, absence of
TSDs, and score poorly to a

model based on known MITEs
in RepBase.

Families x x [100]

MITE
Tracker TIR/MITE

Identifies TIR and TSDs using
self comparison in small

batches using BLAST allowing
for mismatches and gaps.

Candidates are filtered based
on sequence complexity,

length/distance
characteristics, and copy
number after clustering.

Families x x [101]

LTR retrotransposons and non-autonomous DNA transposons (aka MITEs when
very short) are particularly suited to this approach due to the presence of long direct and
inverted repeats flanking intact copies, respectively. Fast computational approaches have
been developed to identify generic locally duplicated direct or inverted repeats, but this
property alone is not sufficient to identify a TE instance. LTR and MITE finders use these
methods to identify potential candidate matches, which are then further evaluated for the
presence of target site duplications (short genomic sequences duplicated at the time of
insertion), non-repetitive flanking sequences (e.g., not part of a larger repetitive element),
and the presence of motifs/protein domains.
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Figure 5. Examples of commonly used TE Signatures for Detection. Structural features: the identifica-
tion of LTR/ERV elements, class II elements, non-LTR retrotransposable elements, and Helitrons can
be achieved by searching for LTRs (~100–1000 bp direct repeats), TIRs (~10–40 bp inverted repeats),
TSDs (6–21 bp on average duplications), and hairpin structures, respectively. In addition, the A and
B boxes seen in RNA polymerase III promoters and 3′ terminal A/T-rich sequence can be used to
identify SINE elements. Motifs/Protein Homology: the order, orientation, and similarity to protein
domains is key to homology-based searches. Gag: group-specific antigen; PR: pathogenesis-related;
RT: reverse transcriptase; EN: endonuclease; Env: envelope; RH: ribonuclease H; MT: methyltrans-
ferase; YR: tyrosine recombinase. Other sequence structures (not seen in the figure above) observed
in LINEs are their poly-A or simple-repeat tails, and the RT and apurinic–apyrimidinic EN (APE)
domains of the Pol protein.

6. TE Discovery Pipelines

A TE discovery pipeline is defined herein as a combination of previously published or
discrete de novo algorithms to comprehensively describe all TE classes within any given
genome. A pipeline represents a protocol for the orchestration of various tools and their
parameters, often augmented with algorithms for clustering TE instances, defragmen-
tation, sequence modeling, and the reduction in false positives and redundancy. The
strategies of several popular pipelines are outlined in Figure 6, and further detailed in
Supplementary Materials.

Integrating a variety of tools into a single pipeline is an effective way to overcome
the shortcomings of any one particular approach; however, it also introduces its own set
of challenges. For instance, the outputs of different tools may substantially overlap with
each other requiring complex adjudication strategies to eliminate the redundancy. This
process is complicated by the natural fragmentation and high sequence divergence present
in many TE instances. Managing the overall false-positive rate is a further challenge when
integrating several discovery approaches, as each additional tool will contribute its own
distinct set of false positives. Finally, each additional method requires evaluation of a larger
set of possibly dependent parameters for the overall process.
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Figure 6. Workflow of select TE discovery pipelines. Each process in the pipeline has been categorized
as classification (purple), signature-based TE detection (green), de novo TE detection (gold), homology-
based detection (black), genome annotation (red), filter and/or refinement (blue) and clustering
(grey). Arrows indicate the general workflow direction. NOTE: the above image is meant to describe
the high-level organization of each pipeline, and does not reflect the inherent complexity contained
within. Refer to Supplementary Materials for additional details.

Various strategies have been employed to produce either a library consisting of a
unique set of TE family exemplars or consensi, or of distinct genomic instances. To that
end, pipelines utilize clustering methods to collapse similar instances into families, or even
redundant families into a single entry. One approach is to use fast sequence clustering
algorithms such as CD-HIT-est for this purpose, efficiently grouping sequences with high
sequence similarity (>75% sequence identity [102]) (PiRATE, RepeatModeler). A similar
approach uses alignment tools (BlastN, Vmatch, etc.) to more accurately assess sequence
similarity (albeit less efficiently) and cluster the pairwise sequence distances using single-
linkage or complete linkage clustering techniques (EDTA, MAKER-P, tephra, REPET).
In addition, pipelines that use sequential discovery and masking stages avoid the inter-
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tool clustering problem altogether (RepeatModeler). This is an area that is likely to see
improvement in coming years as novel sequence distance estimation [103] and clustering
techniques [104] are evaluated in the context of TE families.

The de novo tools invoked by a pipeline may have varying levels of false positives,
including matches to coincidental groupings of low-specificity sequence signatures, in-
clusion of sequences in segmental duplications, low-complexity/tandem sequences, or
identification of gene families. Combining the results of multiple tools compounds these
problems. One approach to reduce false positives has been to consider the flanking or
partially flanking regions of instances, filtering those that demonstrate a level of repetitive-
ness either genome-wide (evidence that either edge is part of a larger repeat), or between
two edges (indicating that the extents of the repeat were not fully recognized) (EDTA,
MAKER-P). Filtering such instances may be effective in reducing false positives but may
also catch true instances. An approach that specifically targets false positives induced
by low-complexity sequences and tandem repeats is to pre-mask these regions prior to
running discovery tools and only restore them if they are found to be flanked by repetitive
sequences (RepeatModeler, REPET).

De novo methods often produce family definitions representing mere fragments of a
full-length family. In many cases, more than one fragment is present, representing different
regions of the same TE family and creating a problem when they are not recognized as such.
Family fragmentation produces inaccurate estimates of families and their abundance, often
hampers correct classification of the family, and produces confusing nestings of annotation.
However, popular pipelines have yet to tackle this crucial problem.

Since the final output of a TE discovery pipeline may consist of instances, exemplar
sequences, and/or consensus sequences from a variety of underlying algorithms, it is
important to be aware of the relative limitations of the different data types and appropriate
uses. Given perfectly random, neutral decay, and a consensus sequence that precisely
matches the ancestral TE, the substitution level of an instance from a consensus is twice
as low as that from the average other instance. While this ideal situation is not always
met, alignments against exemplars will give an average higher divergence of the TE family,
resulting in a higher estimate of the age of the TEs. The sensitivity of the alignments is also
reduced, drastically so when the actual average substitution level is over 15–20%. Some
tools may provide outputs of the intermediate results or provide the multiple sequence
alignments (seed alignments) for the derived TE family consensi. The latter provides a
useful definition for the family and from which a consensus may be further improved or
other forms of sequence modeling, such as profile Hidden Markov Modeling (pHMMs)
may be applied.

The pipelines discussed here have been evaluated to varying degrees on non-model or-
ganisms, distantly related species to those used while developing the pipeline, or on species
harboring differing TE content, which may represent a wider range of sequence divergence.
This is often attributed to the different compositions of TE classes within different species.
Therefore, the appropriate pipeline and associated strengths and weaknesses should be
considered before beginning any genome analysis. Unfortunately, it can be difficult to
make a direct comparison between even de novo tools, and much more so for pipelines. In
particular, there is not a clear standardized or widely adopted benchmarking method for
comparing the relative quality of libraries or genome annotations.

7. Benchmarking

The high diversity of benchmarking approaches applied to TE discovery is a barrier
to both the understanding of the true performance of a method and to the competitive
evaluation of methods. While this issue has been previously identified [105], a universal
approach to this problem has yet to be developed. Of the many benchmarking methods,
the comparison of results to existing highly curated libraries or genome annotations (i.e.,
gold standard dataset) has been the most frequently employed method for assessing true
positives (TP) and false negatives (FN). The gold standard used is dependent upon the
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product and/or goal of the program in question. For example, if the products are consensi,
these are typically compared to Repbase [106] or Dfam [107] consensi in their entirety or
to a random sample. For algorithms targeting one type of TE (e.g., LTR elements), these
elements are extracted from the Repbase consensi based on the criteria the authors have set
and compared to the program output. Alternatively, two common options are utilized if
genome annotation is the output and/or goal: (1) the generated library and the Repbase
library are each used for RepeatMasker runs, and the loci compared or (2) loci obtained
from previously published data are utilized for comparison. The main assumptions when
using gold standards (e.g., Repbase, RepeatMasker annotations, or previously published
data) are that these data are complete and accurate.

Similarly, the assessment of false positives (FP) is often accomplished by running a
given method on a randomized, shuffled, masked or simulated genomic sequence in which
any result is necessarily false. The simplest approaches, randomizing bases or shuffling
words, do not maintain the complexity of the genome (e.g., maintaining isochores and
commonly repeated k-mers) which can produce a less challenging benchmark. Masking
out known elements has the advantage of preserving natural background sequences and
other non-target genomic elements, but assumes that the masking process is ideal and no
true copies of the target are present. Sequence simulation is an attempt to use sequence
models, trained on the natural sequence, to generate sequences with similar complexity.
The GARLIC [108] tool is an example of this last approach, in which a model trained on
the genome is used to generate sequences with the addition of simple/tandem repeats to
create a realistic background sequence. In addition, the inclusion of simulated instances
generated from TE consensus sequences and fragmented/mutated to natural divergence
levels allows the same benchmark to be used to comprehensively assess TP, FN and FP
results. Simulation is particularly well suited to repetitiveness-based de novo algorithms,
but may be less appropriate for programs that detect intra-TE signatures such as TSDs
without extra treatment in the simulation.

In addition to assessing their newly generated algorithm, authors may compare their
approach to similar tools. In these cases, the most common metrics include a copy number
comparison between genome annotations, and/or comparison of the number of models
generated, the length of the sequences generated as part of the program output and the
N50 of the library. Such metrics promote the idea that more is better. However, this notion
does not take into account the quality of the dataset produced.

8. Cleaning Up a TE Library

While de novo programs are sometimes used to directly annotate genomes, a careful
comparison against a pipeline’s complete library or the combination of the output with
previously established models has the advantage that the best match can be chosen between
two or more related models. Other advantages of the use of libraries are reproducibility,
provenance, and the possibility of incremental improvements.

An ideal library would contain only full-length models of all significantly distinct TEs
that have left copies in a genome. Full-length models would not only make annotations
easier to interpret and allow reconstruction of evolutionary events, important for, e.g.,
phylogenetic analysis as pointed out in the introduction, but also avoid unfair competition
between more or less complete models of related TEs. While such an ideal may never be
reached, all automatically created TE libraries currently still need extensive editing before
they can be accepted in curated databases such as Dfam or Repbase. The work involved is
so intense that the great majority of Dfam submissions is currently housed in a non-curated
section [109]. Libraries can always be improved, and many imperfections that seem hard to
address automatically may be fixed in updated TE repositories after manual intervention.

There are some significant common library deficiencies that pipelines can ameliorate
with additional filters or modules. These include extensive redundancy, and the presence
of false positives, artifacts and genic DNA. Below, we also briefly discuss the generation
of relevant (sub)family models, but do not address complex problems such as filtering
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composite artifacts, identifying overextensions and finishing or merging fragmentary
models. These are largely open problems for automated methodologies and still require
extensive manual curation to identify and remedy.

While some pipelines (soft) mask simple repeats before de novo analysis, the output
from all still includes many low complexity sequences with degenerate simple repeats at
their cores. Entries that are almost entirely masked by a combination of low complexity
and simple repeat finding programs could generally be dismissed automatically at the end
of a pipeline. Even if some simple repeats, such as telomeres, are interesting to annotate,
genome annotation programs tend to include a separate tandem repeat finding module
that would identify these before comparison to the library.

The output of signature-based programs usually contains a number of false positives
comprising random genomic sequence. Their uniqueness is a red flag noted by some
pipelines, but should be weighed against the evidence, as low/single-copy active TEs are
often of considerable interest. De novo programs also produce entries looking like random
genomic DNA. These may be long 3′ UTRs of processed pseudogenes or, more often,
fragments of segmental duplications. In seed alignments, they show a lack of defined ends
and true TE instances within them show up as short, dispersed regions with a high number
of seeds aligned. Lacking fully automated interpreters of seed alignments as yet, pipelines
could instead mark entries as possible segmental duplications if they match multiple other
library entries with various classification and if the genome annotation step, already part
of most pipelines, shows them to be primarily localized in distribution.

Models that represent signature-based false positives or segmental duplications can
contain coding regions of cellular genes. These are unwelcome in repeat libraries, if
only for the natural tendency of most researchers to ignore DNA annotated as repetitive.
All de novo methods also create (partial) models of highly expressed mRNAs from the
interspersed processed pseudogenes in a genome, and often create models for common
conserved or tandemly repeated protein domains, zinc-finger motifs being a stalwart.
While some pipelines offer filtration of genic DNA, these rely on user-supplied protein
libraries or repeat-free genomic DNA, the quality of which is critical and not easy to
achieve. Furthermore, proper TE models may be dismissed by distant homologies to
cellular proteins. Instead, pipelines could offer a competitive comparison to a curated TE
protein database [110] and a domain database such as Pfam [111] from which TE protein
domains have been removed. TEs may carry (fragments of) cellular genes along, so this
filter should be conservative.

Each discovery program has a tendency to produce redundant but non-identical
entries for some TE families, especially when they are abundant. For a primate genome,
for example, dozens of generic Alu models are built. A major drawback of using multiple
programs through a pipeline is rediscovery of the same family, resulting in a dramatic
increase in redundancy. This causes confusing genome annotation, with instances of
the same TE receiving different labels, and more false-positive matches. This is not a
small problem; in our experience automatically produced libraries are often more than
twice too large. Most pipelines include a clustering step to reduce redundancy, but this
usually only involves one class of elements. Defining a redundant set and choosing the
best representatives is not a straightforward task, especially since many programs do not
preserve the seeds and alignments that led to each model. Simple rules, such as merging all
models for which the consensus sequences are 80% similar over 90% of the length, generally
do not suffice. Under those restrictions, good models representing distinct subfamilies of a
class I element may be lost, while bad models of the same TE (with significant errors, many
ambiguous bases and/or long false extensions) will be retained. For Alu, the redundant
models are often quite diverged, because the many, highly mutagenic CpG sites have been
called differently to TG or CA in each. As many models are incomplete, two models with
long non-aligned extensions on opposite sites may very well represent a single TE family
but will not be joined following such rules.
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On top of the problems of recognizing genuine duplicates, trying to define what
constitutes a TE family using set cutoffs is impracticable. For phylogeneticists, recognition
of the youngest, potentially dimorphic subfamilies of a TE is important. However, if all
instances more than 80% similar over 80% of their length should constitute a single family
and model [112], young branches of a long-term resident class I TE would go unnoticed
as they will be absorbed by a general model. Additionally, still relatively young elements
with a > 10% substitution level, would never be built, since most or all of their copies
are more than 20% diverged from each other. Generation of one model for many related
TEs in general leads to an overestimate of the divergence and therefore age of the copies,
which can confuse evolutionary analyses. For older TEs, it also leads to a significant loss in
sensitivity during annotation.

Our hands-on strategy to reduce redundancy is to combine the seeds of all interrelated
models and perform subfamily analysis using Coseg when all models involved align
over much of their length, or create subfamily models with a CD-HIT based code when
relationships are partial or modular [113–115]. Such a strategy could be incorporated
in pipelines.

As curators of Dfam, we are also acutely aware of redundancy between libraries of
related genomes. For example, most of the TEs described in the human genome have
left copies that are (originally) shared between all placental mammals. The majority of a
library constructed for a slow-evolving genome such as that of a rhinoceros will match
those ancestral elements and would form redundant entries (as all ancestral models are or
should be included in the analysis of a genome). Since very similar TEs have been active
in separate lineages of mammals, sequence similarity is not the right basis for detecting
this redundancy. Instead, observation of their presence at orthologous sites outside the
lineage is key [116]. Fortunately, as mentioned in the introduction, in the near future, so
many species will have been sequenced that most genomes can be studied in the context of
multi-species genome alignments. In those settings, not only can it be quickly determined
if TE copies are ancestral to two species, but one may avoid rediscovering ancestral TEs
by focusing on those parts of a genome that are lineage specific. Many other advantages
of such subtractive TE detection, which is as old as the publication of the first aligned
mammalian genomes [117–119], suggest that this method may be the future of de novo
TE detection.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes13040709/s1. Supplementary material is an Excel spreadsheet
detailing the TE discovery approaches (including the algorithms used for signature-based, homology-
based, de novo-based TE discovery, as well as filtering, clustering, classification and annotation
methods, in addition to the level of expertise required, program versions, and the output of the
pipeline) presented in Figure 6 in the main text.
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Glossary

Transposable Element (TE) (n): A mobile DNA sequence evolved to replicate within and
throughout genomes independently of the host cell DNA.
Tandem Repeat (n): A (possibly degraded) sequence pattern that is repeated directly adja-
cent to each other.
Satellite DNA (n): Tandem repeats in large arrays that can span megabases and may form
essential chromosome structures such as centromeres and telomeres.
Interspersed Repeat (IR) (n): Any, sometimes highly degraded, sequence pattern of paral-
ogous origin that is repeated a handful to millions of times at mainly non-adjacent places
throughout a genome. Most IRs are copies of TEs at various levels of decay, but, e.g.,
processed pseudogenes and gene families can also be considered IRs. Simple tandem
repeats appear all over a genome as well, but are not of paralogous origin.
Segmental Duplications (n): Continuous portions of DNA lacking defined ends that map
to two dozen genomic locations. Typically ranging in size from 1 to 200 kb, they are
composed of apparently normal genomic DNA, may contain TE copies and (fragments of)
cellular genes, and can occur both interspersed and in tandem. Their distribution often
appears localized to (former) pericentromeric and subtelomeric regions, but copies may
occur anywhere in a genome.
Family/Subfamily (n): A collection of similar genomic subsequences produced by a single
biological process.
Instance (n): An individual fragment or full-length copy of a family in a genome.
Exemplar (n): Exemplars (aka prototypes) are one or more genomic instances of a family
that are used to represent the family in a library.
Source gene (n): TE copy that gave rise to a (group of) particular TE instances.
Consensus sequence (n): A nucleotide sequence representation of a family, often simply
calculated as an average of aligned instances, but ideally approaching the original sequence
of the source gene.
Profile Hidden Markov Model (pHMM) (n): A model of a repetitive sequence family
which encodes the relative observed frequencies of nucleotide matches, insertions, and
deletions at each position in a multiple sequence alignment.
Sequence Model (n): A summary representation of a set of nucleotide or protein sequences,
typically a consensus sequence, a sequence profile, or a profile Hidden Markov Model.
Classification, classification system (n): A hierarchy or other arrangement of transposable
element families, defined by phylogenetic, structural, or other criteria.
Classify (v): To determine and assign the classifications of transposable element families.
Genome annotation (n,v): A labeling of a genome with the locations, names, classifications,
and other properties of genomic features such as simple repeats and transposable elements.
Clustering (v): To group sequences or sequence models together, usually based in some
way on the relative similarity between sequences.
Multiple sequence alignment (MSA) (n): A collection of sequences, in which each se-
quence is aligned to the others and/or to a “reference” sequence based on the similarity of
each sequence to the others.
Seed alignment (n): A multiple sequence alignment of representative instances of a TE
family which can be used to build a model.
Pipeline (n): A comprehensive strategy with which to discover, classify, and annotate all classes
of transposable elements in a given genome assembly; compilations of previously published
algorithms, supplemented with algorithms for clustering, false-positive reduction, etc.
Single-linkage clustering (v): A hierarchical clustering algorithm that forms clusters on
the basis of the minimum distances between pairs.
Complete-linkage clustering (v): A hierarchical clustering algorithm that forms clusters
on the basis of the maximum distances between pairs.
Maximal Exact Match (MEM) (n): An exact match of two subsequences of any length that
cannot be extended in either direction without introducing a mismatch.
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Maximal Approximate Match (MAM) (n): An approximate match between two subse-
quences of any length that cannot be extended in either direction without introducing an
additional mismatch that exceeds the total mismatches allowed.
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