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ABSTRACT When organisms encounter an unfavorable environment, they transition
to a physiologically distinct, quiescent state wherein abundant transcripts from the
previous active growth state continue to persist, albeit their active transcription is
downregulated. In order to generate proteins for the new quiescent physiological
state, we hypothesized that the translation machinery must selectively translate
upregulated transcripts in an intracellular milieu crowded with considerably
higher abundance transcripts from the previous active growth state. Here, we
have analyzed genome-wide changes in the transcriptome (RNA sequencing
[RNA-seq]), changes in translational regulation and efficiency by ribosome profiling
across all transcripts (ribosome profiling [Ribo-seq]), and protein level changes in as-
sembled ribosomal proteins (sequential window acquisition of all theoretical mass
spectra [SWATH-MS]) to investigate the interplay of transcriptional and translational
regulation in Halobacterium salinarum as it transitions from active growth to quies-
cence. We have discovered that interplay of regulatory processes at different levels
of information processing generates condition-specific ribosomal complexes to trans-
late preferentially pools of low abundance and upregulated transcripts. Through
analysis of the gene regulatory network architecture of H. salinarum, Escherichia coli,
and Saccharomyces cerevisiae, we demonstrate that this conditional, modular organi-
zation of regulatory programs governing translational systems is a generalized fea-
ture across all domains of life.

IMPORTANCE Our findings demonstrate conclusively that low abundance and up-
regulated transcripts are preferentially translated, potentially by environment-specific
translation systems with distinct ribosomal protein composition. We show that a
complex interplay of transcriptional and posttranscriptional regulation underlies the
conditional and modular regulatory programs that generate ribosomes of distinct
protein composition. The modular regulation of ribosomal proteins with other tran-
scription, translation, and metabolic genes is generalizable to bacterial and eukary-
otic microbes. These findings are relevant to how microorganisms adapt to unfavor-
able environments when they transition from active growth to quiescence by
generating proteins from upregulated transcripts that are in considerably lower
abundance relative to transcripts associated with the previous physiological state.
Selective translation of transcripts by distinct ribosomes could form the basis for
adaptive evolution to new environments through a modular regulation of the trans-
lational systems.
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The concept that functional heterogeneity results from variations in the translational
machinery is gaining renewed support (1). Variations in ribosomal proteins (RPs),

ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), and translation factors are four molec-
ular axes that provide support for translational regulation (2, 3). Translational regulation
plays an important role in fundamental biological processes like vertebrate develop-
ment, where ribosomes with specific subunit composition, i.e., presence or absence of
ribosomal protein RPL10A/uL1 and RPS25/eS25, preferentially translate functionally
distinct pools of mRNAs in murine stem cells (4). Also in vertebrate development,
ribosome-mediated translational specificity occurs through direct interaction between
RP L38 and structural RNA elements resembling internal ribosome entry sites in the 5=
untranslated region (UTR) of select Hox mRNAs (5, 6). Furthermore, selective translation
modulates stress response and various complex human disease phenotypes (7, 8).
Variations in RP stoichiometry with functional implications have been reported for
Saccharomyces cerevisiae (9), such that RP Asc1/RACK1 is required for efficient transla-
tion of short mRNAs (10), and Rps26-depleted ribosomes support stress responses (11,
12). Moreover, a ribosome code has been proposed to explain the divergence in
phenotypic outcome when individual paralogs of duplicated RP genes are deleted (13).
Not only variations in RP stoichiometry (14) but also 16S rRNA variation in Escherichia
coli has been associated with functional differences that can regulate stress response
via RpoS and RelA regulons (15). While the ultimate functional consequences of
ribosome diversity require careful experimental validation (16) and meticulous inter-
pretation in light of alternative regulatory mechanisms (17), these studies argue against
the notion that the ribosome is a rote translation machine, but rather a context-
sensitive regulatory control element steering conditional protein synthesis (14, 18).
Compared to the organisms above, fewer studies have been performed in the archaea
domain. Nevertheless, translation initiation is suggested to utilize a completely novel
mechanism in haloarchaea (19). In the archaeon Sulfolobus acidocaldarius, RP L7Ae
binds to select coding and noncoding RNAs, including its own mRNA, to regulate
translation (20).

In this article, we explore the interplay of translational and transcriptional regulation
in driving microbial transitions to quiescent states upon encountering unfavorable
environments. Upon exposure to a stressful environment, microorganisms elicit pro-
tective and acclimation responses that are often associated with a dormant or quies-
cent phenotypic state (21). We previously used a systems biology approach to inves-
tigate transcript and protein level changes in Halobacterium salinarum when this
halophilic archaeon underwent transition from active to quiescent growth states in
batch cultures (22) and in response to a controlled switch from favorable oxic to
unfavorable anoxic conditions (23). We discovered that upon encountering nutrient
depletion or anoxic conditions, a large fraction of genes (51% in batch cultures [24] and
9% in oxygen transitions [23]) in the genome were differentially regulated. Notably, the
drop in ATP level partially explained why downregulated transcripts from the active
growth state continued to persist in the stationary phase and under anoxic conditions.
Two observations highlighted the differences in translational regulation across transi-
tions between active growth and quiescent states. First, even though the upregu-
lated transcripts in the quiescent state were orders of magnitude lower in abundance
relative to active growth state transcripts, their protein levels increased. Second, upon
encountering favorable conditions, protein levels of active growth-associated genes
increased within minutes, well before their upregulation at the transcriptional level (23).
Therefore, we hypothesized that genes encoding proteins of the translation system
(e.g., RPs, translation factors, RNases, and RNA-modifying enzymes) are regulated to
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produce a diverse population of ribosomes that selectively translate physiological
state-specific transcripts relevant for a given environmental condition.

To test this hypothesis, we performed sequential window acquisition of all theoret-
ical mass spectra (SWATH-MS) proteomics in concert with RNA sequencing and ribo-
some profiling in the halophilic archaeon H. salinarum. This analysis revealed prefer-
ential translation of upregulated and low abundance transcripts. In an attempt to
uncover the underlying mechanism for this phenomenon, we discovered that tran-
scriptional, translational, and posttranslational regulatory mechanisms act on RP genes
across the growth phase to effect conditional changes in their abundance and stoichi-
ometric association with the assembled ribosome. We further analyzed previously
developed environment and gene regulatory influence network (EGRIN) models (25) for
signatures of heterogeneity in the whole translation system. We discovered that
transcriptional regulation of RPs is fractured into multiple mostly discrete but partially
overlapping conditionally coregulated gene modules (corems). Subsets of translation
system genes associated with tRNA charging (aminoacyl-tRNA synthetases), translation
factors (e.g., initiation, elongation, release, and recycling factors), and RNA transcription
and processing (e.g., RNA polymerase, RNases, and RNA modification enzymes) are split
among conditionally coregulated corems. Notably, we observed similar modular reg-
ulation of ribosomal proteins in E. coli and yeast. This modular and environment-
specific regulation of ribosomal proteins might have emerged to favor evolvability (26)
and functional specialization of ribosomes (27). In sum, our data support the hypothesis
that environment-specific ribosome composition and coupled transcription-translation
in prokaryotes selectively bias translation of low abundance and upregulated tran-
scripts to produce proteins needed for the environment-relevant physiological state.

RESULTS
Interplay of transcriptional and translational regulation across growth phase-

associated physiological state transitions. When H. salinarum cells transition from
lag to stationary growth phase, they travel across multiple regulatory configurations or
states involving gene expression changes in more than two thirds of all genes in the
genome (24). In order to investigate the interplay of transcriptional and translational
regulation at the whole-genome scale for the growth-associated physiological state
transition in H. salinarum, we quantified for each transcript the relative change in its
abundance and ribosomal footprints across all phases of growth in batch culture.
Specifically, we probed four time points representative of different growth phases, i.e.,
early exponential (time point 1 [TP1]), mid-exponential (TP2), late exponential (TP3),
and stationary (TP4). For each sampled time point, we quantified the transcriptome
state using RNA sequencing (RNA-seq) and ribosome translational activity using ribo-
some profiling (Ribo-seq) (see Materials and Methods for details). We used a filter on
magnitude (absolute log2 fold change [FC] � 1) and significance (DESeq2-adjusted P �

0.05) to assess both transcript abundance and ribosomal footprint changes across
growth phase (for a detailed list of transcript quantification, see Table S1, tabs 1 to 12,
in the supplemental material). Of the total set of 2,663 annotated genes in H. salinarum,
304 were not regulated at the transcriptional or translational level (yellow dots
in Fig. 1A). Among the 1,103 genes that were subjected to regulation, changes in
ribosomal footprints per transcript for 875 genes (79%) are proportional to changes in
transcript abundance (black dots in Fig. 1A). Among this set, upregulated genes were
significantly enriched with functions associated with gas vesicle organization (GO:
0031412) and cell motility (GO:0048870), protein phosphorylation (GO:0006468), the
iron-sulfur cluster (GO:0016226), reactive oxygen species metabolism (GO:0072593),
and response to stress (GO:0006950). Functions enriched within downregulated genes
included nitrogen and phosphorous metabolism (GO:0006807 and GO:0006793), car-
bohydrate catabolism (GO:0016052), pyruvate biosynthesis (GO:0042866) and energy
production via proton-exporting ATPase activity (GO:0036442).

Interestingly, ribosomal footprint changes in 228 genes (21%) could not be ex-
plained by transcript level change, i.e., ribosomal footprints were greater or less than
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expected relative to change in transcript level. This observation is in agreement with an
earlier report which showed that more than 20% of the H. salinarum transcriptome
exhibits nonaverage translational efficiency (TE) (quantified as the log2 ratio of ribo-
somal footprints over transcript abundance [28]) in stationary versus exponential phase
(29). Among this set of translationally regulated genes, 189 genes displayed compen-
satory mechanisms (30). First, a set of 110 genes were upregulated at the transcriptional
level, which was not reflected in a corresponding increase in their ribosomal footprints
(blue dots in Fig. 1A). This set of genes are involved in phospholipid and polysaccharide
metabolism (GO:0006644 and GO:0000271), transcription initiation (GO:0006352), and
response to stimulus (GO:0050896). Inversely, 79 genes had a significant decrease in
transcript levels, although their ribosomal loading remained constant (red dots in
Fig. 1A). This set of genes encode functions of DNA replication and repair (GO:0006261
and GO:0006284), modified amino acid biosynthesis (GO:0042398), and electron trans-
fer activity (GO:0009055).

FIG 1 Coupled transcription-translation regulation across growth phase. (A) Scatterplot of relative changes in transcript
abundance (log2 FC mRNA) and ribosomal footprints (log2 FC footprints) in stationary phase (TP4) with respect to early
exponential phase (TP1). Black dots (TC; n � 875) represent genes regulated at the transcriptional level only. Red (n � 79)
and blue (n � 110) dots represent genes under positive (�) and negative (-) compensatory mechanisms, respectively
(COMP). Orange (n � 15) and green (n � 24) dots represent genes translationally regulated only (TL). Yellow dots represent
genes that are not transcriptionally or translationally regulated (NR; n � 304). (B) Linear regression of transcript abundance
(x axis; log10 TPM � 1) and TE (y axis; log2 Ribo-seq/RNA-seq ratio). Slope, a � �1.10; correlation coefficient R � �0.52;
P � 10�132. The gray area represents the 95% confidence interval. (C) Regression analysis of predicted ribosomal footprints
from transcript expression at different growth phases. (D) Deviation distributions from the expected TE given expression
(y axis) in the context of transcriptional regulation across growth phase (stationary versus early exponential; TP4 versus
TP1). Transcriptionally upregulated genes are shown in red, downregulated genes in blue, nondifferentially expressed
(non-DET) genes in white, and all genes in gray. The horizontal axis shows expression levels (x): low, 10 � x � 100; medium,
100 � x � 1,000; high, 1,000 � x � 10,000. The number of transcripts of each boxplot (n) is shown at the top. Asterisks
indicate significance: ns, nonsignificant; *, P � 0.05; **, P � 0.01.
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Orthogonally, 39 genes changed only at the translational level, i.e., while their mRNA
levels did not change significantly, their ribosomal footprint abundances did (orange
and green dots in Fig. 1A). Among the translationally upregulated genes, we noted
VNG2625C, which encodes a PrsW family protease, and nrnA, which encodes a protein
that is a bifunctional oligoribonuclease/PAP phosphatase which regulates degradation
of nanoRNAs in bacteria (31). The translationally downregulated genes were enriched
in redox energy metabolism functions, specifically components of the electron trans-
port chain, including NADH-dependent flavin oxidoreductase gene VNG0933G, cyto-
chrome c biogenesis protein gene VNG0150H, and nicotinate-nucleotide pyrophospho-
rylase gene VNG1884G, in addition to the PadR family transcriptional repressor
VNG7102. A detailed list of all enriched functions is provided in Table S1, tabs 13 to 20;
additionally, a visualization summary is provided as Fig. S1B to H in the supplemental
material.

These observations are consistent with the known physiological shift of H. salinarum
when it transitions from early exponential to stationary phase of growth (24). In
summary, while 79% of all regulated genes have consistent changes at the mRNA level
and ribosomal footprints (n � 875), there is significant evidence for interplay of tran-
scriptional and translational regulation for at least 228 genes (21%).

Selective translation of low abundance and upregulated transcripts. Next, we
investigated the potential for ribosomes to regulate physiological transitions through
different phases of active growth and into a quiescent state in stationary phase. In
particular, we asked whether and how the translation machinery selectively translates
low abundance and upregulated mRNAs that are required for homeostasis in each
growth phase. By comparing transcript abundance to TE, we discovered that TE
negatively correlates with mRNA expression (slope � �1.10; R � �0.52; P � 10�132;
Fig. 1B), irrespective of transcript length or transcript half-life (data obtained from
reference 32; see Fig. S2 for more details). This negative relationship exists at all
physiological states across growth phase, becoming stronger in stationary phase
(Fig. 1C). This finding suggests that ribosomes associate more efficiently with low
abundance transcripts. This finding was further supported by the observation that the
15 transcripts that are exclusively upregulated at the translational level [TL (�) in
Fig. 1A] are low in abundance (Fig. S3). Furthermore, we discovered across all levels of
expression that transcriptionally upregulated genes were associated with higher TE
with respect to transcriptionally downregulated genes (Mann-Whitney U test, P � 0.05;
Fig. 1D). This observation supports the notion that transcription and translation are
coupled in archaea and is consistent with our discovery of selective translation of
upregulated transcripts across growth-associated physiological transitions in H. salina-
rum. Through the analysis of corresponding changes in transcript levels and ribosome
occupancy in E. coli (33), we have discovered compelling evidence that bacteria also
preferentially translate low abundance transcripts. However, we did not see evidence
for this phenomenon in yeast (34), suggesting that this phenomenon might be exclu-
sive to prokaryotes (Fig. S4).

RP abundance and composition within ribosomes across growth phase-
associated physiological states. The preferential translation of low abundance and
upregulated transcripts, as well as translational regulation of 228 genes (21% of all
regulated genes), motivated further investigation into a mechanistic explanation for
these phenomena. It has been demonstrated in other organisms that differential RP
stoichiometry plays a major role in driving physiological modulation during cell growth
(9). Therefore, we assessed protein abundance and composition of assembled ribo-
somes using quantitative proteomics, specifically sequential window acquisition of all
theoretical mass spectra (SWATH-TM; see Materials and Methods and Table S1, tabs 21
and 22, for details). We observed a progressive decrease of RP abundance as growth
phase advanced toward stationary phase, when a median log2 FC � �1.04 indicates a
general repression of translation in the cell (Fig. 2A). Notably, relative abundance
changes in some RPs deviated across time from the overall trend, suggesting that
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ribosomes with distinct RP compositions were active in each of the different growth-
associated physiological states.

As expected, ribosome composition was generally conserved but had few notable
exceptions. Relative stoichiometry ratio (SR) of five RPs consistently deviated from the
general trend across multiple time points, with most significant stoichiometric devia-
tions of approximately twofold increase and decrease in S28E and S10-like proteins,
respectively (Fig. 2B). Within statistical significance, we observed higher ribosomal
associations of S28E (log2 SR � 0.94) and L44E (log2 SR � 0.39). Both RPs with higher
stoichiometry belong to a three-gene operon together with ndk (which encodes a
nucleoside diphosphate kinase), a conserved gene across all domains of life with
pleiotropic effects in a wide range of functions (35). The RP stoichiometry of S28E and
L44E increased despite significant downregulation of the operon at the transcriptional
level (5,483 to 342 transcripts per million [TPM]; log2 FC � �4.00; P � 1 � 10�7). The
differential association of the two RPs in the ribosome has implications on regulation
of translation, given that S28E is located at the mRNA exit site in eukaryotes (36) and
L44E is a conserved component of the E-tRNA site (37) of the eukaryotic and archaeal
ribosome where it interacts with initiation factor eEF3 (38). Similarly, ribosomes in
stationary phase have lower stoichiometry for three RPs: S10-like, S13, and L24E with

FIG 2 Ribosome abundance and composition shifts across growth-related physiological states. (A)
Relative RP abundance changes (log2 FC) with respect to early exponential phase (TP1). Protein detection
ranged from n � 49 to n � 50 RPs across samples. (B) Ribosome composition (log2 RP stoichiometry ratio)
changes across growth phase. Small white dots represent RP stoichiometry values, and small black dots
represent values outside the 95% confidence interval (95% CI). Large colored dots highlight RPs with two
or more deviation events outside the 95% CI threshold. Dashed colored lines assist picturing the trend
across time. White horizontal bars inside violin plots indicate 95% CIs.
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ratios of log2 SR � �0.94, log2 SR � �0.35, and log2 SR � �0.30, respectively. At least
two of these RPs have also been critically implicated in regulatory functions: while not
much is known about S10-like protein, S13 is a conserved protein across archaea,
bacteria, and eukaryotes that controls mRNA-tRNA complex translocation (39–41), and
L24E binds to translation initiation factor IF6, which is conserved in archaea and
eukaryotes (42). Thus, protein composition and abundance of the pool of assembled
ribosomes progressively change across different stages of growth. Importantly, five RPs
occur in different stoichiometry within assembled ribosomes in stationary phase com-
pared to early exponential phase. We predict that these five RPs play an important role
in growth phase-dependent regulation of protein synthesis in H. salinarum.

Transcriptional and translational regulation of RP genes. We investigated
whether transcriptional and translational regulatory mechanisms account for the dif-
ferential RP stoichiometry we observed. Interestingly, changes in RP transcript levels
appeared to be mediated by at least two distinct processes in stationary phase with one
group of 29 transcripts (group A) with median stationary phase downregulation of log2

FC � �2.04 and a second group of 29 transcripts (group B) with log2 FC � �4.23 (blue
dots in Fig. 3A). While multiple mechanisms contribute to transcript level changes (new
transcription, RNA stability, targeted degradation, etc.), this bipartite transcriptional
regulatory program is most likely an outcome of distinct transcriptional regulation of RP
genes in group A and group B and not operon structure (Table S1, tabs 23 to 25, and
Fig. S5 and S6).

FIG 3 RP genes are transcriptionally and translationally regulated. (A) Scatterplot of relative abundance changes
with respect to TP1. Each dot represents median log2 FC over three biological replicates for a given RP gene. Colors
map to time points. (B) Scatterplot of expression and relative change of RP gene abundance (RNA-seq; left) and
ribosomal footprints (Ribo-seq; right) at time point TP4 compared to TP1. (C) Scatterplot of absolute transcript and
footprint abundances measured across growth phase. Each dot represents the median log2 normalized counts over
three biological replicates for a given RP transcript. Colors map to time points. R, correlation coefficient; a, slope.
(D) Scatterplot and regression model of RP transcript and footprint abundance changes in time point TP4
compared to TP1. The black line represents regression model, the dark gray area represents regression confidence
interval, and the light gray area represents the regression prediction interval. The red dot highlights rpl14p outside
the prediction interval. R, correlation coefficient; a, slope.
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To understand the implications of the bipartite transcriptional regulation, we ana-
lyzed transcript abundances, ribosomal footprints, and protein levels of RPs across
different stages of growth. The bipartite grouping was apparent only in relative
expression and not at the level of absolute expression or ribosomal footprints (Fig. 3B).
There was significant correlation between change in abundance of RP transcripts and
ribosomal footprints (slope � 0.64; R � 0.77; P � 10�46; Fig. 3C). RP transcript abun-
dance decreased as growth phase advanced—from 4,719 median normalized counts in
early exponential (TP1) to 366 in stationary phase (TP4). Ribosomal footprints followed
a similar trend, from 1,761 in TP1 to 217 in TP4. In fact, an ordinary least-squares
regression model demonstrated that all footprint changes were within the expected
prediction interval based on transcript level changes (slope � 0.70; R � 0.88; P � 10�20;
Fig. 3D). For only one instance, rpl14p, we observed ribosomal footprints significantly
more abundant than expected by chance. While the rpl14p transcript level was down-
regulated, its ribosomal footprints did not change proportionally. Given rpl14p tran-
script levels and downregulation, we would expect a 26-fold downregulation (log2

FC � �4.70) of its footprint levels. However, rpl14p exhibits only a sevenfold down-
regulation (log2 FC � �2.78). Unexpectedly, we did not observe a significant deviation
of L14 at the level of protein abundance and ribosomal stoichiometry, suggesting that
deviation of changes in ribosomal footprints for rpl14p is likely a false-positive result,
especially given that it is in the middle of a large 20-gene operon. Consistently for all
RPs upon transition to stationary phase, downregulation was much more pronounced
at the transcriptional (log2 FC � �3.68) and ribosomal footprint (log2 FC � �3.02)
levels, relative to protein level (log2 FC � �1.04), possibly reflecting the well-known
fact that proteins are more stable than mRNAs. Taken together, these observations
demonstrate that relative changes in transcript abundance and TE of RP genes do not
manifest at the protein level, thus maintaining the overall conserved stoichiometry of
RPs within ribosomes.

Modular programs govern conditional regulation of RP transcription. Given the
extensive growth phase-dependent mRNA changes in RP genes, we explored a whole-
genome gene regulatory network of H. salinarum EGRIN model to determine whether
regulation of translation system genes was governed by context-specific transcriptional
programs. In brief, the EGRIN model of H. salinarum was constructed in two steps (43).
First, the cMonkey algorithm (44, 45) was used to discover biclusters, which are sets of
conditionally coregulated genes that share conserved gene regulatory elements (GREs)
in their promoters. Second, regulators for each corem were inferred using Inferelator
(46, 47), which explains and predicts relative changes in expression levels of genes
within each bicluster as a weighted sum of corresponding or preceding changes in
transcriptional and environmental factors. We further developed an EGRIN2 model (25)
which consists of an ensemble of EGRIN models— each constructed with a different
data subset from a compendium of 1,495 transcriptome profiles from diverse environ-
mental conditions. EGRIN2 models high-confidence associations among genes, envi-
ronments, GREs, and regulators based on frequency of their cooccurrence within
biclusters across all EGRIN models, resulting in corems. Corems are modular entities in
EGRIN2 that capture with high confidence specific environmental context and regula-
tory mechanisms for coregulation of genes, and therefore, EGRIN2 represents an ideal
framework to investigate condition-specific regulation of the translation machinery.

With the exception of four RP genes (rps19e, rps27ae, rps24e, and rps12P) that were
not grouped into any corem, 54 out of 58 annotated RP genes segregated into four
classes based on applying hierarchical clustering on membership to 72 identified
corems (Fig. 4A). These classes (corem membership information is detailed in Table S1,
tabs 26 to 28), which we have labeled “class I-IV,” were also somewhat distinguished by
operon and genome architecture, as would be expected from the inclusion of sequence
features in the biclustering algorithm. For example, a large operon encoding 22 RPs, the
RNase P protein subunit, the SecY translocation protein, and a putative RNA methyl-
transferase, was fully represented in two corems. In all other corems, this operon was
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fragmented, meaning that subsets of genes within the operon were conditionally split
and differentially coregulated as transcript isoforms (48). All corems containing genes
of this operon included different combinations of an additional 16 RP genes scattered
throughout the genome (Fig. 4B). Further, these four classes extended to other trans-
lational proteins (Fig. S7).

In the largest group, class I, 38 RP genes—12 belonging to the small subunit and 26
to the large subunit—are broadly coregulated across 26 corems, albeit with substantial
differences among the individual corems. Class II, consisting of seven RP genes (five
small subunit and two large subunit) was coregulated in three corems, fractured in
seven more corems, and altogether coregulated with additional genes. In the genome,
the seven RP genes are physically located in two consecutive operons also containing

FIG 4 RP genes are organized into distinct functional coregulated classes. (A) Bootstrapped hierarchical
clustering of RP genes based on corem membership identified four classes, including three principal
classes plus three outlier genes, joined together as class IV. Classes are boxed and colored with red,
green, and blue, and outlier genes in magenta. (B) RP genes are depicted on the y axis versus corems on
the x axis. Dark gray squares indicate the presence of a particular gene in a given corem. The RP genes
are arranged and colored by class on the right side. Corems comprise both neighboring genes in operons
but also distal genes. (C) RPs are depicted in the ribosomal 3D structure following the color scheme of
the functional classes as shown in panel A. Functional classes of RPs do not follow a restricted pattern
of physical interactions, indicative of functional specialization of the ribosome due to coregulation in
different environments, rather than coexpression derived from physical interactions at the protein level.
Gray sections represent rRNA molecules. Subunits excluded (S12P, S19E, S24E, and S27AE) from the
clustering analysis because they were not present in any corem are depicted in orange.
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three RNA polymerase subunits. The functional coherence of this class is further
emphasized by six out of the seven genes (rps2P, rps4p, rps9p, rps11p, rps13p, and
rpl13p) being universal RP genes, with the lone exception of rpl18e. Class III consists of
six RP genes (two small, four large subunits) across 12 corems, seven of which
contained all six RP genes. Three of the RP genes are in an operon, while the other three
are separated from the operon and each other on the chromosome. In contrast to class
II, five RP genes (rps28e, rpl7ae, rpl37ae, rpl10e, and rpl24e) are specific to archaea and
eukaryotes, with the lone exception being rps10p. Classes II and III are each coregulated
with class I in single, discrete corems, further suggesting modular regulation of the
ribosome as a whole. Three of the remaining RP genes (rps6e, rps8e, and rps10-like)
show sparse association with each other and previous classes and were associated
together as class IV. Two genes from the S10 ribosomal family, rps10 and rps10-like,
encode two ostensibly similar RPs that are divergently regulated. Further, rps6e en-
codes an RP that is located near the A-site of the ribosome, where it can interact with
mRNA structures to regulate translation (Fig. 4C). Together, these findings suggest that
specific conditional regulation of these proteins may lead to distinct ribosomes with
functional specialization.

Evidence and mechanisms of condition-specific regulation of RPs. Once we
determined that RPs associate with corems containing genes with other cellular
functions, we hypothesized that H. salinarum might conditionally regulate RP compo-
sition of ribosomes in different environmental conditions. We explored evidence for
context-specific regulation of RPs by analyzing expression coherence of genes within
and across corems of the four classes under a comprehensive set of environmental
conditions. We observed that genes within corems of the same class are coregulated
across many conditions (Fig. 5A), but there is variability across classes (Fig. 5B). Notably,
we discovered that variability across corems from different classes are condition
specific. Specifically, for each broad category of conditions— growth in batch culture,
shifts between high and low oxygen, response to different metals, etc.—we computed
expression similarity between ribosomal corem classes, defined as the proportion of
corem comparisons that had no significant gene expression differences (Fig. 5C). We
conclude that the degree of variability in coregulation of ribosomal genes across the
four classes of corems is strongly dependent on environmental context.

We hypothesize that differential coregulation of RPs across environmental condi-
tions should be apparent in distinct gene regulatory elements defining their promoter
architecture. Specifically, we hypothesized that identified RP corem classes should have
distinct GREs defining their promoter architecture. The EGRIN2 model predicts specific
mechanisms for transcriptional regulation for every gene in the genome; for instance,
it predicts that rps13p (VNG1132G) is regulated by at least three transcription factors via
binding to three distinct �6- to 20-nucleotide GREs in the promoter of this gene
(Fig. 5D and F). Furthermore, we demonstrated previously that EGRIN2 also accurately
predicts which subset of GREs in the promoters of genes in corems are responsible for
their environment-specific coregulation (25). Using this capability of EGRIN2, we inves-
tigated whether the observed variability in coexpression of RP genes across the corems
of different classes was a consequence of different GRE composition. We performed
hierarchical clustering on the composition of GREs implicated in coregulation of genes
within corems enriched in RP genes (Fig. 5E). Distinct combinations of seven GREs are
implicated in differential coregulation of ribosomal genes across the corems with at
least one third of RP genes, supporting the hypothesis that distinct transcriptional
regulatory mechanisms are responsible for the condition-specific variation in modular
coregulation of RPs with one another and 614 other genes in the genome. We conclude
from this analysis of the EGRIN2 model that variation in gene expression corresponds
to environment-dependent modular regulation of ribosomal genes.

Coregulation of translational complexes in E. coli and S. cerevisiae. We investi-
gated the generality of our findings from H. salinarum by analyzing the structure of
conditional coregulation of RP genes in E. coli and S. cerevisiae. For these two organ-
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isms, the EGRIN models (25, 49) were mined in the same manner as for H. salinarum,
and the resulting corems containing RPs, other translation factors, and the transcription
apparatus were dissected. Analysis of the EGRIN models of E. coli and S. cerevisiae also
showed that RP genes are organized into groups of corems, none of which encom-
passes all the genes in all circumstances. Rather, the set of RP genes is fractured into

FIG 5 RP genes are coregulated in a condition-specific manner. (A) Expression distribution for two representative
examples of the 72 ribosomal corems identified. Vertical bars represent interquartile range (third quartile [Q3] to
first quartile [Q1]) of expression across genes. n indicates the number of genes in each corem, whereas m refers to
the subset that encode RPs. Colors correspond to different environmental conditions (see key). Conditions are
ranked based on median expression. Gray background bars correspond to average expression distribution of
10,000 permutations of randomly selected gene sets of the same size as the corem. Note the larger interquartile
range of background distributions. (B) Corem similarity based on gene expression. We used uniform manifold
approximation and projection (UMAP [77]) to visualize 62 ribosomal corems in a two-dimensional space from an
original high-dimensional space of 1,495 environmental conditions. Each dot represents a corem. Color maps to
functional classes. (C) Similarity matrix between ribosomal corem classes broken into nine different broad condition
categories (n, number of experimental conditions). Similarity values across diagonals may not reach one, as we
defined class similarity as the proportion of class corems with no significant expression differences. (D) Promoter
architecture of rps13p (VNG1132G) deciphered by MAST (78) alignments of cis-regulatory motifs from each GRE, in
this case GRE #7, #9, and #28 discovered by MEME (79) in gene promoters of EGRIN biclusters that include rps13p.
The heights of the histograms are proportional to the frequency of GRE alignments to the VNG1132G promoter. (E)
Hierarchical clustering of corems enriched in RP genes based on relative importance of each GRE (log10 GRE counts)
coregulating corem members. Red and blue bars correspond to class I and III, respectively. (F) Motif sequence logos
for two representative GREs.
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multiple mostly discrete, but partially overlapping, corems (Fig. S8). This indicates that
ribosome composition regulation in all three organisms is less of a singular entity, and
more of a mosaic patchwork. Additionally, subsets of translation system genes associ-
ated with tRNA charging and translation factors (including aminoacyl-tRNA synthetases,
initiation, elongation, and release factors), as well as RNA handling (RNases and RNA
modification enzymes) are split among the corems. This pattern was apparent in all
three organisms tested, suggesting a conserved pattern in all domains of life. Since the
conservation in regulatory network architecture stems from gene expression, in addi-
tion to sequence features, it is not simply a genome sequence comparison, but it
represents a correspondence in active physiology of organisms in relation to particular
environmental conditions. Thus, these findings are consistent with the idea that
functional specialization drives modularity in biological systems. Such modular regu-
lation has evolutionary implications, as modularity would facilitate the evolvability of
the translational complexes (27).

Physical protein-protein interactions support coupled transcription-translation.
Physical interaction of the RNA polymerase (RNAP) with the 30S ribosomal subunit in
prokaryotes (50–52) suggests that actively transcribed genes also actively recruit ribo-
somes for coupled translation. We investigated the evidence for a similar phenomenon
in archaea by analyzing a protein-protein interaction map of H. salinarum constructed
through immunoprecipitation of 14 protein A-tagged transcription complex compo-
nents (22). In brief, 13 general transcription factors (GTFs)—six TATA-binding proteins
(TBPs) and seven transcription factor B proteins (TFBs)—and bacterioopsin activator
(Bat) were epitope tagged with protein A, and used as bait to immunoprecipitate H.
salinarum transcriptional complexes in 14 independent experiments, performed in
duplicate. We constructed a network of 128 proteins (as nodes) and 228 interactions,
i.e., unidirectional edges from tagged baits to coimmunoprecipitated proteins that
rendered seven modules (see Materials and Methods). This network presents 13
physical interactions between eight components of the transcriptional machinery and
five ribosomal proteins (Fig. 6). Interestingly, while TFBs associated exclusively with the
ribosome large subunit, TBPs preferentially interacted with the small ribosomal subunit.
We further investigated whether coimmunoprecipitated RPs form an interacting inter-
face in the ribosome. We explored their physical location in the ribosome three-
dimensional (3D) structure. We found that while three of the five ribosomal proteins are
scattered across the ribosome surface, L2 and L15E are particularly close to each other
(Fig. S9). Nevertheless, functional implications of this observation require further inves-

FIG 6 RPs physically interact with transcription complex components. Diamonds represent RPs; squares
represent transcription complex components. Tagged proteins used as bait in the immunoprecipitation
experiment are highlighted by a black border. Arrowheads link bait to coimmunoprecipitated proteins.
We labeled each of the seven modules obtained by the Newman-Girvan clustering algorithm using a
different color.
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tigation. Physical interactions between transcription and translation complexes have
been previously implicated as the mechanism by which transcription and translation
are coupled in prokaryotes, and here it gives a mechanistic hypothesis for why actively
transcribed genes are preferentially translated. Moreover, this is consistent with the
evidence we have provided that low abundance and upregulated transcripts are
preferentially translated in both E. coli and H. salinarum, but not in yeast, because of
physical separation of the two processes (Fig. S4).

DISCUSSION

Here, we have demonstrated that preferential translation of low abundance and
upregulated transcripts influences growth-associated physiological state shifts in H.
salinarum. Characterizing the precise mechanism underlying this phenomenon has
important implications for understanding how cells transition to a physiological state
appropriate for a resource-limited environment (anoxia, nutrient starvation, etc.), which
requires preferential and efficient translation of low abundance transcripts (Fig. 7).

Prior studies showed that highly expressed transcripts were upregulated and func-
tionally required for processes such as aerobic respiration, ATP synthesis, tricarboxylic
acid (TCA) cycle, transcription and translation, during oxic growth of H. salinarum—
when the oxygen level dropped, the haloarchaeaon adopted a quiescent state and
these transcripts were downregulated, but they continued to persist in high abun-
dance, even though they were functionally irrelevant for anaerobic physiology (23).
Importantly, protein levels of these downregulated transcripts also decreased during
anoxia. In other words, even though these transcripts were present in high abundance,
they were not actively translated in an anoxic environment. Further, H. salinarum
reinitiated translation of these persistent highly abundant transcripts almost concur-
rently with increase in oxygen level, and well before their transcriptional upregulation
(23). The current study proposes a mechanistic explanation for these classic observa-
tions.

Bernstein et al. (53) have demonstrated in E. coli that transcription initiation may be
the dominant factor in determining mRNA steady-state levels in the cell, while mRNA
decay might serve as a mechanism to respond rapidly to environmental changes. We
hypothesize that most low abundance transcripts are transcribed constitutively at a low
rate that is proportional to or less than their degradation rate, and therefore, they are
associated with higher TE relative to highly abundant transcripts, which are expressed
at a high level only in environments where their functions are relevant. Although
outside the scope of this study, this hypothesis can be experimentally tested with
GRO-seq and pulse-chase experiments (54, 55). Nonetheless, these observations are
also consistent with both our finding that all transcriptionally upregulated genes have
higher TE relative to downregulated transcripts, and the Schmid et al. finding that
highly abundant transcripts are not translated in an unfavorable environment when

FIG 7 Synthesis figure. Growth phase H. salinarum transcriptome abundance, ribosomal footprints, and proteome
quantification and analysis identified key points of translational regulation. TLR, translational regulation; TE,
translational efficiency; TCR, transcriptional regulation; PPI, protein-protein interaction; OD, optical density; RP,
ribosomal protein.
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they are transcriptionally downregulated (23). Alternate mechanisms can also explain
why some upregulated transcripts are selectively translated in a growth phase-
dependent manner. For examples, posttranslational modifications such as differential
ubiquitination in eukaryotes can alter the stability of proteins to regulate ribosomal
function such as by stalling assembled ribosomes and blocking access to initiation
factors (56). While archaea do not possess the classical ubiquitination pathway, they do
utilize hypusination to stop translation and growth via initiation factor aIF5A (57).

At a mechanistic level, the preferential translation of low abundance and upregu-
lated transcript can be explained by the well-known phenomenon of coupled tran-
scription and translation in prokaryotes (58, 59). At the molecular level, results pre-
sented in this study (Fig. 6) and previous reports for bacteria (50–52) and archaea (60)
have demonstrated that the transcription machinery facilitates the recruitment of
translation factors and the ribosome through physical protein-protein interactions.
While this mechanism of transcription-translation coupling is pertinent to 875 H.
salinarum genes that are regulated just at the transcriptional level, it is noteworthy that
at least 228 genes (21% of all regulated genes) are subject to translational regulation
during physiological state transitions. We observed two orthogonal modes of transla-
tional regulation: (i) changes in ribosomal footprints in fixed-abundance transcripts, and
(ii) compensatory mechanisms, where ribosomal footprints remained unchanged in
spite of transcript abundance changes. These translationally regulated genes encode a
wide range of critical functions that include amino acid and lipid metabolism, DNA
replication and repair, transcription regulation and energy homeostasis. This result has
major implications on understanding physiological state transitions in archaea, as it has
been already noted in human disease physiology (7, 61).

To that end, we discovered that regulation of translation systems is heterogeneous,
and modular. Notably, these ribosomal modules (corems) also include 561 additional
genes of diverse functions, including transcription, metabolism, signal transduction,
and transmembrane transport, suggesting that regulation of components of the trans-
lation system is coordinated with the expression of diverse functions. This modular
regulation of the translational machinery could provide a basis for specialization and
adaptive evolution. There is extensive evidence that specialization leads to the emer-
gence of modularity in biological systems, including in metabolic and transcriptional
regulatory networks. There are at least two reasons why modularity facilitates the ability
of an organism to generate adaptive heritable variation, i.e., evolvability. First, an
organism can select variations inside one module, without perturbing other modules.
Second, there is also evidence that modules can be repurposed or merged to generate
novel functions (26, 62, 63). Despite the complex modular regulation of RP genes, we
observed the expected and coordinated decrease in transcript and protein abundance
of RPs when cells shifted to stationary phase. Concordantly, the majority of RPs in the
ribosome-enriched fraction also decreased in a coherent manner, with very similar
changes in relative abundance. These observations suggest that regulation of RP genes
at the transcriptional and translational level has evolved to maintain stoichiometry of
protein subunits within the assembled ribosome. However, ribosomal associations of
five RPs significantly deviated upon transition to stationary phase, most likely driven by
a posttranscriptional mechanism, and indicative of a pool of ribosomes with different
RP stoichiometry that is responsible for variation in TE across physiological states (4, 18,
64). While further experimental validation is needed to demonstrate that ribosomes of
distinct composition selectively translate specific sets of transcripts, our analysis of
transcriptional regulatory networks of E. coli and yeast suggests that modular regula-
tion and coordination of ribosomal proteins with other cellular functions are general-
izable phenomena that underlie environment-specific adaptation and specialization of
all organisms.

MATERIALS AND METHODS
Cell culture and sampling. Wild-type Halobacterium salinarum NRC-1 was cultured in a liquid

nutrient-rich complex medium (CM) (250 g/liter NaCl, 20 g/liter MgSO4·7H2O, 3 g/liter sodium citrate, 2
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g/liter KCl, and 10 g/liter peptone [Oxoid, United Kingdom] made with distilled water). Cultures were
inoculated to a starting optical density at 600 nm (OD600) of 0.02 with starter culture with an OD600 of
0.5 which was derived from a single colony. Cultures were grown in unbaffled flasks in which 40% of the
flask volume is occupied by the culture. Cultures were grown at 37°C, shaken at 220 rpm, and illuminated
at �20 �mol/m2/s in Innova9400 incubators (New Brunswick). Triplicate cultures were grown, and
samples were harvested at four time points. The four time points were selected to represent the early
exponential phase (OD600 of 0.2; 14.3 h), mid-exponential growth (OD600 of 0.5; 21.5 h), late exponential
phase (OD600 of 0.8; 28.8 h), and stationary phase (40.8 h). The final time point was selected to be 12 h
past the late exponential phase, since OD600 readings are not representative of cell growth in H.
salinarum in stationary phase (24). At each time point, whole cells were collected by centrifugation for
analysis by RNA sequencing, ribosome profiling, and mass spectrometry (MS) proteomics.

RNA-seq and ribosome profiling analysis. Cells were pelleted by centrifugation (8,000 � g, 2 min,
4°C), resuspended in a buffer containing 3.4 M KCl, 100 mM MgCl2, and 10 mM Tris-HCl at pH 7.4,
sonicated at 4°C to lyse cells (amplitude 50%, pulse 30 s on and 15 s off, repeated 6 times), and
centrifuged again at 14,000 � g for 10 min at 4°C to remove cell debris. Supernatants were collected and
treated with RQ1 DNase (Promega), followed by centrifugation (14,000 � g, 10 min, 4°C). Ribosome-
bound RNA was generated by treating the lysate with RNase I and quenching the reaction with
Superase-In RNase inhibitor (see Fig. S1A in the supplemental material). Macromolecular complexes were
collected by spin column isolation (MicroSpin S-400 HR; GE), elution was performed by centrifugation
(600 � g, 2 min, room temperature), and samples were snap-frozen in liquid nitrogen and stored at
– 80°C. The elution sample was split into two aliquots, one for ribosome footprint sequencing and one
for proteome analysis. For transcriptome sequencing, total RNA was collected from the cell lysate using
TRIzol-chloroform extraction and elution with water. A total of 24 barcoded libraries were prepared for
sequencing; 12 using the TruSeq Stranded mRNA HT library prep kit for mRNA, and 12 using the NEBNext
Small RNA Library Prep Set from Illumina for the ribosome-bound fragments. Libraries were pooled,
denatured, and diluted according to the NextSeq 500 protocol. Single-end sequencing of libraries was
performed on the Illumina NextSeq 500 platform using two high-output flow cells with 75-bp read
lengths. Adapter sequences were trimmed using Trimmomatic (65). Transcript abundance and ribosomal
footprint quantification in the form of transcripts per million (TPM) was performed using kallisto (66)
against a reference transcriptome of 2,665 open reading frames (ORFs). Differential gene expression
analysis was performed using DESeq2 (67) (after HTSeq [68] and STAR [69]).

Assembled ribosome protein analysis. As described above, macromolecular complex isolation spin
column (MicroSpin S-400 HR; GE), elution samples (enriched fractions) were obtained, snap-frozen in
liquid nitrogen, and stored at – 80°C. The protein content of the samples was determined by bicin-
choninic acid assay (Thermo-Fisher). Proteins were reduced (5 mM dithiothreitol, 45 min, 37°C), alkylated
(14 mM iodoacetamide, 30 min, room temperature, darkness), and digested with trypsin (1:50 enzyme/
substrate ratio, 37°C, 16 h). Samples were desalted with tC18 SepPak cartridges (Waters). Samples were
analyzed with a TripleTOF 5600� system equipped with a Nanospray-III source (Sciex) and an Eksigent
Ekspert nanoLC 425 with cHiPLC system in trap-elute mode (Sciex). Peptides were separated with a
gradient from 3% to 33% 0.1% formic acid in acetonitrile (vol/vol) in 120 min. Data were collected in
MS/MSALL SWATH acquisition mode using 100 variable acquisition windows. Data were analyzed with the
OneOmics SWATH Proteomics Toolkit (Sciex) within the BaseSpace cloud computing environment
(Illumina). An ion library was generated from H. salinarum grown to mid-exponential and stationary
phase acquired in shotgun mode (information-dependent acquisition scanning of mass spectrometry
performed in tandem [IDA-MS/MS]) with the TripleTOF 5600� system. A confidence filter of �75%
(statistically significant differentially expressed proteins) was applied to report protein expression
changes.

Gene ontology analysis and visualization. Gene ontology (GO) annotations for each H. salinarum
gene were obtained from MicrobesOnline (70). We used the Bioconductor package topGO (71) to
discover significantly enriched GO terms in gene sets of interest. We used REVIGO (72) to summarize and
visualize enriched GO terms.

Cluster analysis. Corems were identified based on an extensive pipeline that was previously
published (25). To group corems by similarity of gene content, hierarchical agglomerative clustering of
genes based on presence or absence in a corem was performed in R. The method used to create the
distance matrix therefore was binary, and the clustering algorithm was average similarity. The clusters
were bootstrapped using the package pvclust 10,000 times, and maximal clusters with �95% significant
P values were selected, resulting in four robust classes. Genes that were not present in any corem were
excluded from the analysis. In order to compare two given EGRIN2 corems, we computed both
Spearman’s rank correlation coefficient (SRCC) and Kolmogorov-Smirnov test (KST) on their expression
signatures over all conditions. If correlation was positive and significant (SRCC � 0.4 and P � 0.05) and
KST was nonsignificant (P � 0.05), we considered that the corems had no significant expression
differences.

Structural modeling. To obtain a visual sense of the RP classes, subunits were analyzed in PyMol.
The Haloarcula marismortui large ribosomal subunit (PDB 4V9F) was aligned to the large ribosomal
subunit of the archaeon Pyrococcus furiosus (PDB 4V6U). The P. furiosus large subunit was then hidden,
while the small subunit was kept. rRNA structures were colored gray, and the RPs were colored according
to their class or lack thereof.

Protein-protein interaction network analysis. Protein interaction data were retrieved from Sup-
plementary Material Data Set 3 from Facciotti et al. (22). We removed duplicate entries. We retrieved
protein annotation from NCBI Assembly (ASM680v1; RefSeq annotation), MicrobesOnline (73), and
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the Halobacterium salinarum NRC-1 SBEAMS database (https://baliga.systemsbiology.net/projects/
halobacterium-species-nrc-1-genome). We used the Newman-Girvan algorithm (74) implemented in
clusterMaker2 (75) for Cytoscape (76) version 3.7.2 to call network modules. To highlight interactions
between general transcription factors and ribosome proteins, we hid all the nodes and edges not
connected to them, and applied Cytoscape yFiles Hierarchic Layout. We minimally shifted the position
of a few nodes to improve network legibility.

Data availability. RNA sequencing data have been deposited into NCBI SRA under BioProject
number PRJNA413990. Mass spectrometry data are available in the PeptideAtlas data repository: http://
www.peptideatlas.org/PASS/PASS01559. All code implementation, including sequence quantification
and EGRIN model analyses, is available at the GitHub repository: https://github.com/adelomana/30sols.
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FIG S1, TIF file, 2.5 MB.
FIG S2, TIF file, 2.2 MB.
FIG S3, TIF file, 2.7 MB.
FIG S4, TIF file, 1.6 MB.
FIG S5, TIF file, 2.7 MB.
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