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ABSTRACT
The development of strongly predictive validated 
biomarkers is essential for the field of immuno- oncology 
(IO) to advance. The highly complex, multifactorial data 
sets required to develop these biomarkers necessitate 
effective, responsible data- sharing efforts in order to 
maximize the scientific knowledge and utility gained 
from their collection. While the sharing of clinical- and 
safety- related trial data has already been streamlined to a 
large extent, the sharing of biomarker- aimed clinical trial 
derived data and data sets has been met with a number of 
hurdles that have impaired the progression of biomarkers 
from hypothesis to clinical use. These hurdles include 
technical challenges associated with the infrastructure, 
technology, workforce, and sustainability required for 
clinical biomarker data sharing. To provide guidance and 
assist in the navigation of these challenges, the Society for 
Immunotherapy of Cancer (SITC) Biomarkers Committee 
convened to outline the challenges that researchers 
currently face, both at the conceptual level (Volume I) 
and at the technical level (Volume II). The committee also 
suggests possible solutions to these problems in the form 
of professional standards and harmonized requirements 
for data sharing, assisting in continued progress toward 
effective, clinically relevant biomarkers in the IO setting.

INTRODUCTION: PRACTICAL CHALLENGES IN 
DATA SHARING FOR CLINICAL BIOMARKER 
DEVELOPMENT
Data sharing today enables the new science 
of tomorrow. It is increasingly evident that 
studies analyzing previously published data 
can achieve new discoveries, often having 
as much impact as the original projects, 
and can greatly improve medical research 
and benefit all stakeholders. While the 
companion volume to this paper, ‘Society 
for Immunotherapy of Cancer clinical and 
biomarkers data- sharing resource document: 
Volume I—conceptual challenges’, provides 

an overview of the surrounding framework 
and proposed activities of stakeholders for 
responsible and successful data sharing, this 
practical challenges volume will examine and 
address the more procedural details of the 
current hurdles to data sharing.1 Here, we 
dissect those hurdles down to basic approach-
able elements that must be addressed to 
encourage better data- sharing strategies and 
compliance. Additionally, we put forward 
timely recommendations and methodolog-
ical guidelines that will also remain flexible 
enough for adaptation to both current and 
future landscapes of data sharing.

For responsible data sharing to become 
the new norm, and to engender a lasting 
paradigm shift, it must first be embraced by 
all stakeholders and influencers. The impor-
tance of careful planning and execution 
of data- sharing protocols must be placed 
alongside any new clinical hypothesis tested. 
A broad range of sensible changes can be 
made to the current landscape of medical 
science in order to encourage the accep-
tance of data- sharing initiatives as a neces-
sary component of scientific collaboration. 
In order to discuss important consider-
ations regarding data- sharing initiatives, the 
Society for Immunotherapy of Cancer (SITC) 
Biomarkers Committee formed the Clinical 
and Biomarkers Data Sharing Subcommittee, 
which developed two manuscripts, Volumes 
I and II, respectively, addressing conceptual 
and practical challenges to data sharing.

This manuscript (Volume II) is divided into 
four sections, each addressing a specific group 
of practical challenges in data sharing. In the 
Infrastructure challenges section, we describe 
considerations for contracting intellectual 
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property (IP) and biospecimen collection associated with 
multicenter network infrastructure planning, consid-
erations for the continuous validation of evolving plat-
forms and technologies, and proposals for cloud- based 
computing methods that maintain required constants in 
communication. In the Technological challenges section, 
we describe popular data platforms that are standardiz-
able, discoverable, searchable, and interoperable, as well 
as how these platforms require the development and 
adoption of common protocols to deliver common data 
elements for meaningful computation across disparate 
data sets. In the Workforce challenges section, we outline 
the expected knowledge and skills required of expert 
personnel trained to execute the design, management, 
technical, and operational aspects of data sharing. Finally, 
in the Sustainability challenges section, we address how 
the undervalued costs of data organization and sharing 
are borne by a small set of stakeholders and the need 
for these costs to be equitably redistributed across bene-
fitting parties, in addition to how universities, research 
foundations, and professional societies can better foster 
and support data- sharing sustainability.

INFRASTRUCTURE CHALLENGES
With the ever- growing sophistication and cost of correl-
ative science for immunotherapy clinical trials, many 
stakeholders have realized that the future lies in large 
collaborative efforts that make the best use of the 
breadth and depth of information generated from high- 
dimensional and single- cell technologies. These stake-
holders include major academic centers, federal funding 
sources, philanthropic foundations/societies, and phar-
maceutical/biotech companies. Stand- alone federal 
funding for laboratories is increasingly being phased 
out in favor of multi- principal investigator (PI) applica-
tions, with preference for those involving multiple collab-
orating institutions.2 3 In addition, entities such as the 
Parker Institute for Cancer Immunotherapy, the Multiple 
Myeloma Research Foundation, the Foundation for the 
National Institutes of Health, and some pharmaceutical 
companies have engaged funding to create Networks 
of Excellence that bring together multiple academic 
centers with top expertise for collaborative streamlining 
of their technical and analytical pipelines. However, the 
infrastructure required to execute these goals needs to 
evolve accordingly, from virtual collaboration to the phys-
ical creation of networks with coordinated, synchronous 
efforts.

A recently implemented example of multicenter infra-
structure for biomarker discovery is the Cancer Immune 
Monitoring and Analysis Centers- Cancer Immunologic 
Data Commons (CIMAC- CIDC) Network, funded by the 
National Cancer Institute’s (NCI’s) U24 Cancer Moon-
shot Initiative.4 This grant of more than US$50 million 
led to the establishment of four CIMACs, which are 
tasked with performing a complex and comprehensive 
set of assays using biospecimens collected from patients 

undergoing immunotherapy in clinical trials under the 
NCI’s Cancer Therapy Evaluation Program cooperative 
groups. The goal of this initiative is to generate rich inte-
grated data sets that correlate treatment mechanisms 
(ie, multi- omic biomarkers) with clinical outcomes (ie, 
response to treatments, progression, and overall survival). 
CIDCs will maintain and centralize these integrated data 
sets, leading to the eventual creation of a mineable public 
database of well- validated, harmonized, and integrated 
data, with the hope that better predictive biomarkers 
might be discovered from these data. Establishing this 
pipeline for the generation, analysis, and centralized 
storage of this integrated data requires an unprecedented 
framework of infrastructure, which is organized from a 
series of working groups with an overseeing committee. 
This infrastructure enables the monitoring of all steps 
in the process, from trial selection and sample manage-
ment, to data collection, analysis, and dissemination. This 
project has identified a number of obstacles met during 
the creation of successful data- sharing infrastructure, 
which are discussed below.

Contracts, IP, and ethics
Establishing contracts between institutions—including 
pharma/biotech companies, biobanks, and trial PIs—
represents one of the principle roadblocks to data 
sharing. Specifically, questions arise around putting in 
place contracts generated only by participating centers 
versus the use of master agreements covering all institu-
tions and partners in general terms, and how to distribute 
IP and publication deliverables from discoveries made. 
Different methods by which joint IP can be apportioned 
between contributing parties have been used, with the 
most straightforward method being for the involved 
parties to agree that any joint IP created as a result of 
the collaboration is jointly owned by the parties. However, 
this structure only works if all parties are willing to allow 
the unrestricted use of the joint IP by one another. Often, 
due to the parties’ business or technical concerns, there 
might need to be restrictions on one or both party’s use 
of joint IP, which could be addressed in different ways. 
For example, all of the IP rights could be assigned to one 
of the parties, which then would grant a license, limited 
as dictated by business or technical concerns, to the other 
party. Alternatively, both parties can be considered joint 
owners of all the joint IP, with each party agreeing to 
certain restrictive conditions on their use or disclosure 
of it. Special considerations exist when one of the parties, 
often an educational institution, receives government 
funding, since in that case the government may have 
rights to use IP (and possibly any underlying contrib-
uted IP) created as a result of government funding. In 
that case, as part of the agreement, the IP created with 
government funding should be available without overly 
burdensome restrictions, taking into account any require-
ments that apply to particular IP because of government 
funding.
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If the network agrees on collaborative terms, implying 
shared authorship and IP rights, some rules may conflict 
with existing bylaws of established cooperative groups. 
Even if and when a common language of defined terms 
is finally agreed to by all parties, amendments to existing 
clinical protocols and consent forms need to be consid-
ered to ensure that samples can be shared in accordance 
with local institutional review boards (IRBs). One recom-
mendation is to engage legal and contractual teams at 
each site together, rather than individually, to facilitate 
mutual agreements. As this includes contract offices, IP 
offices, material transfer agreements, IRBs, exchanges 
between PIs, lab testing sites, and biobanks, the networks 
of legal interactions between these different facilitators 
and stakeholders must be planned as early in the devel-
opment process as possible. In addition, the language 
used in clinical protocols to perform correlative assays 
and to share resulting biospecimens for a study should 
allow flexibility in assays performed, and include provi-
sions in informed consent documents for the future use 
of samples in later experiments or analyses, including 
testing of novel biomarkers.

Specimen collection
A network may depend on central biobanks or on local 
site processing, each having their own rules for sample 
collection, processing, storage, and sharing. Since an 
important step in biomarker validation is the evaluation 
of preanalytical factors that may affect assay performance 
(including specimen collection, handling, and processing 
variables), standard operating procedures for controlling 
specific biomarker development steps are essential and, 
to this effect, guidelines have been recently developed 
by CIMACs.5 6 Banks and networks receiving specimens 
need to coordinate their laboratory information manage-
ment systems and ensure end- to- end quality assur-
ance, with 24/7 monitoring of storage conditions and 
temperature- controlled shipping containers. Important 
details to consider include codes used for the original 
specimens versus those used by the network, as well as 
the development of common vocabulary dictionaries for 
metadata. The latter is particularly important since meta-
data summarizes basic information about the data, thus 
making finding and working with particular instances 
of data easier. In addition, establishment of priority on 
sample use by individual institutions versus the network 
should be explicitly and clearly defined. The recommen-
dations for all of these variables are summarized in an 
umbrella collection protocol by CIMAC, assembled by 
experts in assays and biobanking, and which will help 
investigators properly plan in advance.7

Some novel assays, such as single- cell high- dimensional 
immune profiling, tend to be dependent on high- quality 
materials (eg, biospecimens), typically extracted from 
fresh patient tissues.8 9 Bringing surgeons, endoscopists, 
interventional radiologists, pathologists, and scientists 
together is critical to ensure timely collection of samples 
with minimal time to processing. Education and interest/

involvement from all parties is key, and identifying such 
partners is vital to the success of a collaboration. However, 
logistical issues must also be considered, such as the need 
for runners (ie, biobanking technicians) and the timely 
delivery of specimens from operating rooms to analytical 
laboratories.

Equipment and conduct of research
A major reason for performing collaborative research in 
multiple centers is the high cost of state- of- the- art equip-
ment. Often, these networks may choose to centralize 
some assays to make them more cost- effective and reduce 
the need to standardize protocols across different labs. 
However, the throughput of high- dimensional multi- 
parametric technologies is often limiting, and most 
networks will need to have redundancy (eg, standards 
and controls) in place, to ensure that a consensus can be 
reached in how to interpret data generated from different 
experiments at different sites measuring similar metrics.

At the heart of multi- center science lies the harmo-
nization of assays and platforms, ensuring that results 
can ultimately be compared. The CIMACs have spent 
the past 2 years benchmarking their respective assays in 
serial rounds of proficiency testing for multiplex immu-
nohistochemistry (IHC), whole exome sequencing, and 
RNA sequencing (RNA- seq), among other assays.5 6 A 
particular challenge stems from differences in platforms 
at all levels, from antibody clones and reagents used to 
machines and interpretation algorithms. Streamlining 
these technologies as much as possible is helpful, despite 
each site typically already having optimized protocols in 
place that are difficult to modify or replace.

Although efforts in protocol standardization are critical 
and should lead to vast improvements in workflows, it is 
also important to align expectations and to understand 
the limitations of harmonizing assays, especially since not 
everything can be tested at once. The success and details 
of these harmonization efforts will soon be reported, and 
recommendations on best practices will also be provided.6 
To ensure their relevance, assay comparisons for stan-
dardization cannot be a ‘one- and- done’ event, and they 
will, in fact, need to be continuously validated and reas-
sessed during the process of such research.

Progress in any collaboration requires constant commu-
nication, through the organization of regular conference 
calls and presentations. These can also, however, quickly 
devolve into time sinks, especially during troubleshooting 
phases or real- time analysis of data. Despite expectations 
that these networks should be optimized for the contin-
uous generation of data, another important priority is to 
continue to allow science to come first, which sometimes 
means that extra time is needed to ensure the genera-
tion of top- quality data, rather than adhering to a rigid 
schedule. An equally important recommendation is to 
allow assays to evolve and to improve from study to study, 
which is critical despite the temptation to lock them in at 
the same technical state for greater reproducibility. When 
technical improvements are introduced to keep up with 
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the cutting edge of research, provisions for bridging and 
validation work should be made to guarantee that older 
data also remain useful and comparable.

Aside from machines used for assays, computational 
and storage infrastructure for data storage, analysis, and 
sharing likely represents the biggest technology invest-
ment required for effective data sharing. Leasing space on 
cloud- based servers versus local servers needs to be care-
fully considered, as communications or exchange between 
them may be challenging. However, cloud computing 
may also provide new opportunities for novel research, 
since it can allow studies to be performed at larger scales, 
using data shared and integrated from multiple sources.10 
These benefits should be weighed against the possibility 
of risks associated with cloud computing, especially issues 
with data security and the need to consider the rights of 
research participants. In order to enable large- scale anal-
yses and computing while maintaining patient privacy, 
Molnár- Gábor et al advocate a ‘middle- ground’ solution 
of federated or hybrid clouds, allowing large- scale cloud 
computing while restricting data access to approved indi-
viduals and institutions.10 The utility of ‘model to data’-
type platforms also includes proper facilities for data 
storage, advanced data management, and analysis, and 
these platforms are poised to address a majority of infra-
structure, ethical, technological, and sustainability issues 
associated with biomarker and clinical data sharing, 
without the need to modify current ethical and legal 
frameworks on the usage of clinical data.11

TECHNOLOGICAL CHALLENGES
The goal of data sharing is to provide transparency on 
how shared data sets were generated, and to reliably share 
comparable cross- study data, enabling increased statis-
tical power for the identification of biomarkers that are 
associated with clinical benefit from the treatment being 
investigated. While the former enables reproducibility of 
data and comparison with similarly designed future trial 
outcomes, the limited availability of patient- derived trial 
samples emphasizes the need to plan for comparable 
data generation prospectively from a technology platform 
viewpoint. In this context, the current technology plat-
forms used for analysis and robust biomarker generation 
represent an inherent challenge to providing comparable 
data sets at the single biomarker level, and even greater 
challenges to meeting the current and ever- growing 
demand for multiplex analysis of patient- derived samples 
for observations of the intrinsic and varied complexity of 
tumor- immunobiology.

With the goal of increasing the comparability of patient- 
derived biomarker data originating from the same or 
similar technology platforms, for any individual tech-
nology, in- depth knowledge on the sensitivity, specificity, 
stability (including positive and negative controls used), 
the acquisition platform, and the analysis algorithm is 
essential. In addition, planning on the format of data 
set outputs needs to be considered well in advance, early 

during the trial design process. Data set formats must 
be designed to be compatible with those emerging from 
similar studies to avoid the need for later conversion, which 
may not be financially feasible or even altogether techni-
cally possible. Currently, a number of efforts to achieve 
efficient data comparison are in progress, including indi-
vidual as well as joint retrospective bridging studies, in 
addition to attempts at the development of standardized 
harmonization protocols for leading technology- derived 
assays. Below, examples of such efforts are discussed in 
further detail.

Variabilities of immune checkpoint expression status across 
different immunohistochemistry platforms
One of the most prominent and timely examples in 
immuno- oncology (IO) that also illustrates the critical 
need to harmonize platform- specific technologies is the 
group of antibody- based therapies called checkpoint 
inhibitors targeting the programmed cell death protein-1 
(PD-1)/programmed death- ligand 1 (PD- L1) axis. 
Currently, there are six different checkpoint inhibitors 
approved by the US Food and Drug Administration (FDA) 
that have demonstrated a positive association between 
clinical outcome and the expression of the PD- L1 protein 
within the tumor microenvironment.12 13 In patients with 
non- small cell lung cancer, observation of PD- L1 expres-
sion on tumor cells (using IHC technology) has been 
associated with clinical benefit, and has thus resulted in 
the development of companion/complementary diag-
nostic (CDx) tests designed to evaluate the PD- L1 status 
of each patient prior to treatment with anti- PD-1 or anti- 
PD- L1 checkpoint inhibitors.14 However, multiple propri-
etary PD- L1 IHC assays were developed using different 
primary antibody clones, IHC platforms, protocols, 
sensitivities, and scoring methods or algorithms. Despite 
using the same overall technology and target (PD- L1 
protein expression) the different permutations across 
individual assays has led to distinct staining properties 
and patterning for each, raising concerns about direct 
comparability and interchangeability of derived findings 
and data sets.15 As a result, two different waves of supple-
mental bridging studies conducted in a precompetitive 
setting using both samples from clinical trials (Blueprint 
Phase I Project16) and from real- world settings (Blueprint 
Phase II Project17) have been performed. Both of these 
studies concluded that, with the exception of one assay, 
the different assays and antibody clones used showed 
comparable results for PD- L1 expression on tumor cells 
(although with some differences in numbers of positive 
cells detected per clone used), but showed rather poor 
concordance for PD- L1 expression scoring on immune 
cells.16 17

While IHC remains a highly practical and cost- effective 
diagnostic and prognostic method, this single- marker 
method cannot tell the whole story of the complex 
immune microenvironment. Emerging multiplex IHC 
and immunofluorescence technologies are promising in 
the field of cancer immunotherapy. Unlike conventional 
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IHC, which only allows the labeling of one single marker 
in a tissue sample, multiplex IHC is able to detect multiple 
markers from a single tissue sample while providing 
comprehensive information about the cell composition 
and spatial arrangement. The demand for multiplex 
IHC technologies that output standardized data from 
harmonized protocols will likely increase as it is further 
demonstrated that this methodology has the potential to 
characterize mechanisms of tumor resistance and escape 
in patients.18

Single-cell RNA-seq sample preparation and technologies to 
manage complex and difficult-to-harmonize data sets
In line with the increased demand for multiplexing, RNA- 
seq technologies have emerged as a useful tool to address 
complex, multi- pathway tumor- immune regulation mech-
anisms, and as a complement to IHC- based protein detec-
tion data sets. Beyond the already information- dense 
data sets generated from regular bulk RNA- seq methods, 
the advent of single- cell technology (scRNA- seq) offers 
tremendous opportunity toward greatly increasing reso-
lution in detection of the full gamut of immune cell 
subtypes and simultaneous characterization of their 
heterogeneous functional profiles. The data sets asso-
ciated with scRNA- seq technologies have the potential 
to be significantly larger than previous RNA- seq tech-
nologies. There are technological challenges presented 
by the many current platforms available for scRNA- seq, 
with a number of factors impacting sensitivity and oper-
ational applicability.19 For example, the selection of the 
initial protocol for transcribing mRNA into cDNA (eg, 
full- length sequencing vs expressed sequence tag (EST) 
sequencing) results in differing sensitivities for less abun-
dant transcripts.19 In addition, the resolution of scRNA- seq 
results can be impacted by different cell sorting methods 
such as fluorescence- activated cell sorting or droplet- 
based microfluidics, and by the number of cells acquired, 
often varying from sample to sample, and between indi-
vidual patients.20–25

For cellular subtypes of very low abundance (eg, 
dendritic cells in peripheral blood), a presorting enrich-
ment step may be required to characterize subpopula-
tions of interest. However, once data sets are generated 
for sharing from these different platforms in, for instance, 
clinical trials demonstrating the pharmacodynamics of 
a given treatment or for identification of response via 
predictive biomarkers, bridging studies comparing them 
will certainly be required to assess the reproducibility 
and feasibility of harmonization of such data sets. Recent 
advances in the field have demonstrated the feasibility 
of integrating data sets gathered from scRNA- seq with, 
for example, data from single- cell assays for transposase- 
accessible chromatin sequencing (scATAC- seq) and with 
data from in situ gene expression assays.26 The expected 
difficulties in integrating massive numbers of data points 
derived from multiple scRNA- seq studies require that 
data sharing must be considered early in the study design 
process.

Tumor mutational burden assay standardization
Another important and currently emerging theme in 
predictive biomarkers for IO CDx development is the 
genomic assessment of tumor mutational burden (TMB). 
TMB represents both a surrogate prognostic marker and a 
predictive marker for the presence of tumor neo- antigens 
in cancer immunotherapies across multiple cancer types.27 
On June 16, 2020, the FDA granted accelerated approval 
to pembrolizumab for the treatment of adult and pedi-
atric patients with unresectable or metastatic TMB- high 
(TMB- H) solid tumors, defined as those harboring ≥10 
mutations/megabase as determined by an FDA- approved 
test (ie, the FoundationOne CDx test), who progressed 
following prior treatment and who have no alternative 
treatment options.28 The direct measurement of tumor 
peptide antigens via methods such as mass spectrometry, 
and the ability to load these peptides onto major histo-
compatibility complex (MHC) molecules is not yet suit-
able for routine clinical application. However, in current 
clinical trials, multiple sequencing- based TMB techno-
logical platforms and panels have to date been reported 
to accurately quantify TMB. Francello et al investigated 
these platforms and concluded that there is a ‘need for 
standardization of TMB quantification and reporting’ in 
order for clinical trial TMB results to be compared for 
assessment and clarification of their decision- enabling 
potential.29 Not surprisingly, and similarly to scRNA- seq 
sequencing platforms, multiple factors including library 
generation and sequencing, sample quality, sequencing 
depth, and algorithm development may generate signifi-
cantly different TMB data sets across independent 
studies. Currently, two organizations, Friends of Cancer 
Research and Quality Assurance Initiative Pathology, are 
coordinating and proposing the standardization of TMB 
assessments to enable reliable and reproducible patient 
results.30

Ring studies for data standardization and lessons learned 
from flow cytometry technologies
Flow cytometry is an example of a technology already 
known for presenting challenges in data collection and 
analysis. This technology remains important for immuno- 
oncologists, as it offers the advantage of multiplexing 
and quantification, placing it as an indispensable tool for 
immune phenotyping of both the blood and tumorous 
patient compartments. One of the main observed chal-
lenges of flow cytometry has been the generation of 
comparable data across studies and across clinical trials 
using automated sample analysis. The individual gating 
criteria, as well as the signal- to- noise ratio of discrete 
cellular populations, may have critical impacts on the 
variability of data sets even in instances using the same 
detection methods, antibody clones, labeling fluoro-
chromes, and sample preparation.31 One of the data 
standardization pioneers offering collective ring studies 
for academia and industry, as well as cellular reference 
samples for controls, is the Association for Cancer Immu-
notherapy Immunoguiding Program.32
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Another major challenge posed by this technology 
lies in the identification and quantification of rarer 
antigen- specific T cell subsets. A recent comparison of 
peptide- MHC multimer- binding T cells from 28 labora-
tories using different automated gating tools concluded 
that the automated gating algorithms tested scored simi-
larly to manual central gating by detecting these cell 
populations in the range of 0.0005%–0.0001% of total 
lymphocytes.33 None of the tested tools, however, could 
be fully automated, as data outputs required user- based 
manual decision- making. Still, a careful preselection of 
which tools and technologies will be used is paramount, 
particularly if clinical trial samples are to be analyzed 
using this technology. Standardization of immune pheno-
typing protocols, including which markers to use and how 
to classify immune subsets, together with standardization 
of gating strategies are needed for data set integration, 
similarly to what has been successfully done, for instance, 
by the EuroFlow Consortium in the field of hemato-
logic malignancy diagnosis, prognosis, and therapeutic 
response prediction.34

Comparable clinical data elements as precursors to effective 
data harmonization
The sharing of comparable data sets has been discussed 
above as an important development that will promote 
the discovery of robust biomarkers. Several factors 
pertaining to study design impair the development of 
biomarkers of clinical response, including small sample 
sizes and observations reported too early for patients to 
exhibit complete or lasting responses to the agent(s) 
tested. These issues warrant the sharing of comparable 
clinical data sets, in order to assist in the establishment 
of well- supported prognostic biomarkers and patterns of 
response to IO therapies. It is also crucial that reference 
data sets are generated using patient cohorts receiving 
non- IO, standard- of- care therapies. As the field of IO still 
suffers from deficiencies in the consistency of expected 
response criteria among studies, the clinical component 
of shared data sets does not always report comparable 
clinical features, making it very difficult to correctly pool 
and harmonize available data sets.

Clinical response criteria and end points are a highly 
debated and evolving area in the field of IO. While inves-
tigators continue to favor the use of Response Evaluation 
Criteria in Solid Tumors (RECIST),35 they are also consid-
ering the other models, including the consensus- based 
criteria for response to immunotherapy (iRECIST),36 
immune- related response criteria (irRC),37 and immune- 
modified RECIST (imRECIST).38 However, others use 
measures such as overall survival and 6- month progression- 
free survival as a surrogate of success for IO treatments.39 40 
Another challenge is that response criteria are cancer 
type- dependent and differ across diseases investigated 
(eg, pancreatic cancer vs melanoma and glioblastoma 
vs melanoma).41 Two growing SITC- supported interna-
tional assemblies, the TimIOs initiative and SITCure, are 
collectives working at forming long- lasting partnerships 

with both industry and academia, with the aim of assem-
bling, pooling, and harmonizing gene expression and 
clinical data sets from patients receiving immunothera-
pies during clinical trials.42 Their common goals are to 
reveal robust biomarkers of durable patient responses for 
the establishment of guidelines for treatment, along with 
treatment timelines that ensure that durable, long- lasting 
responses can be achieved, while minimizing possible 
side effects and the societal and financial burdens asso-
ciated with unsubstantiated prolongation of treatments.

The sharing of common clinical data elements that can 
be used to establish pan- cancer immunotherapy response 
criteria is as critically important as any other biomarker- 
based feature that can be extracted from harmonized 
clinical trial data sets. The solving of this particular 
hurdle may require combined meta- analysis and artificial 
intelligence approaches, which will only be made possible 
if shared clinical data sets are complete and produced to 
present comparable common data elements.

In summary, the aforementioned examples underscore 
that efficient data set sharing requires careful consider-
ation of the generation of high- quality raw data across 
technology platforms early during study or trial design, in 
addition to the careful planning and design of harmoniz-
able and sharable data output deliverables. This becomes 
especially important when clinical pharmacodynamic 
biomarkers are generated to support dose selection, to 
provide proof of mechanism, or to identify predictive 
response biomarkers. In this context, the generation of 
comparable data sets for sharing is paramount for the 
eventual development and delivery of more rapid and 
efficient treatment opportunities for patients with cancer. 
There are vast numbers of studies and trials currently 
using multiplexing and multi- omics technologies that are 
generating unprecedented volumes of data, all with the 
singular hope of identifying simple, robust, and econom-
ical biomarkers for CDx development. These biomarkers 
will ideally be able to stratify patients and responses to 
cancer immunotherapy, but will require intermediate 
validation preceding standardization for routine clinical 
use.43 This exemplifies the critical need for key stake-
holders to subscribe to technological standards that can 
be applied across different trials to ascertain that both 
biomarker and clinical data outputs will be comparable 
and usable for secondary studies, bridging studies, and 
meta- analyses that provide the opportunity to statistically 
power up initial findings for robust biomarker discovery.

WORKFORCE CHALLENGES
The establishment of a better space for secondary 
biomarker data interrogations by making clinical trial 
data sets more accessible to the broader research commu-
nity would require the implementation of a data stan-
dards workflow process that would allow data sharing 
to be undertaken in a responsible manner. At the same 
time, however, the implementation of such a process 
could present several additional complex challenges 
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related either to the nature of the stakeholders involved 
in providing such data (eg, sponsors and funders, clin-
ical trialists, and regulatory authorities as discussed in the 
companion Volume I to this manuscript1), or to the quality 
and maintenance of the data committed to sharing via a 
central repository. Hence, in order to ensure that data 
sharing becomes meaningful, any prospective biomarker 
data repository should abide by a data standards workflow 
process. For this process to be successful, it should meet 
the following two requirements: 1) personnel encom-
passing a broad range of expertise to enable an end- 
to- end workflow in a seamless manner, and 2) data input 
must be provided in a manner that is usable and shar-
able.44 Personnel with a broad range of expertise should 
provide the following:

 ► Regulatory oversight—Ensure that data deposited for 
sharing can be legally and ethically shared. Patient 
data should be encrypted and anonymized to elimi-
nate any traceability to the source of origin and any 
identifiable data. Moreover, by maintaining contin-
uous contact with regulatory authorities worldwide, 
personnel can ensure that core requirements and 
practices supporting the responsible sharing of clin-
ical trial data that can be harmonized are met. The 
companion Volume I to this manuscript discusses the 
protection of patient privacy in greater detail.1

 ► Scientific oversight—Confirm the validity of the 
parameters measured to enable meaningful inter-
pretation. As described above, in most IO trials, both 
cellular and soluble multiplex and multi- omics data 
are collected from the blood and tissue samples. The 
inputting of such voluminous data sets into a central 
repository designed for data sharing can be opera-
tionally, logistically, and infrastructurally challenging 
but crucially important to foster new discoveries.

 ► Bioinformatic oversight—Ensure that methods 
applied to data are comparable or standardized.

Considering that multi- omic data can be derived from 
many different sources, one must ensure their compara-
bility among multiple data contributors. In the preceding 
Technological challenges section, examples were provided 
where, even when common platforms are used in, for 
example, flow cytometry, data quality control and analysis 
can result in different outputs and interpretation. This 
aspect becomes even more challenging when different 
assay platforms are used by the end user. For instance, 
when enumerating CD8+ T cell content of a tissue, the 
tissue preparation conditions, the antibody clones used 
for staining, the tissue areas used for enumeration, and 
the way that tissues are scored can all lead to completely 
different results. Whether the scoring is undertaken in a 
quantitative, qualitative, digital, or manual manner can 
also cause discordance between different data inputs. 
To enable meaningful data usage, the following must be 
defined:

 ► Type of data to be deposited—By predefining the 
minimum amount of sample data that can or should 
become available for deposition, one can ensure that 

comparisons across several trials can be possible. Such 
an approach can be guided by already ongoing efforts 
to develop standardized biomarkers and assays, as is 
the case with the Partnership for Accelerating Cancer 
Therapies initiative that aims to provide a systematic 
approach to immune and oncology biomarker investi-
gations in clinical trials.4

 ► Comparable data—As already highlighted, the data 
generated for deposition must abide by particular 
standards of execution. Whether this refers to specific 
technologies or to platforms, producers and users 
of the data must ensure that similar parameters are 
measured in correlative biomarker analyses. The 
preceding sections provide further insights as to how 
this can be achieved through biospecimen prepara-
tion and careful selection of technologies and data 
output formats that are akin to other data sets for 
downstream harmonization. Only then can cross- trial 
data comparisons result in meaningful conclusions. 
The availability of treatment and outcome infor-
mation in integrated data sets from clinical trials, 
including data on patient demographics, tumor char-
acteristics, safety, and efficacy, will ensure that benefits 
of data sharing are maximized.

 ► Format of the input data—Certain format specifica-
tions must accompany all data prepared for input. 
Such specifications will enable the swift integration of 
new usable data sets into the repository with minimal 
need for intervention by data curators. Adherence to 
standardized format specifications can also ensure that 
respective input data sets are readable and compre-
hensive and that those containing common data 
elements can easily be used for cross- trial comparisons. 
Moreover, standardized formats will minimize error 
introduction, and thus enable prompt availability of 
accurate information to secondary users. It is impera-
tive that such standards and specifications are clearly 
disseminated to the data providers for application. An 
excellent example can be seen in the cBioPortal for 
Cancer Genomics, whereby a standardized bioinfor-
matics workflow was developed, offering continuous 
support toward integrative biomarker analysis.45 46

 ► End- user agreements—Similar to other data- sharing 
platforms, the terms of use must be agreed on by all 
stakeholders. Considering the regulatory sensitivities 
imposed by such clinical data sets, there needs to be a 
clear mandate and guidance ensuring that all aspects 
of the sharing of clinical trial data are undertaken 
responsibly and conducted ethically. Such considera-
tions should adopt guidance and recommendations 
made by regulatory bodies, either local investigators 
and IRBs or national/international regulatory bodies 
(eg, the FDA). Moreover, IP associated with the data 
provider must not hinder data sharing to the deposi-
tory (as discussed in the companion Volume I to this 
manuscript).

 ► Access to deposited data sets from the European Union 
(EU) and the US—In 2018, the EU implemented the 
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General Data Protection Regulation (GDPR), which 
covers the areas of privacy, data protection, and artifi-
cial intelligence. The US legislates data privacy differ-
ently from the EU and has a variety of federal and state 
laws rather than one governing piece of legislation at 
the national level. Differences in data sharing and data 
distribution models between EU and US databases 
are exemplified by the European Genome- Phenome 
Archive47 and The Cancer Genome Atlas (TCGA) 
data sets.48 The former is overseen by a Data Access 
Committee which is responsible for reviewing appli-
cations and grants permission for access to potential 
users, as defined by the original informed consents. 
In contrast, TCGA has both an open- access data set 
containing information that does not pose a risk of 
patient re- identification as well as a controlled- access 
data set that contains information carrying a small risk 
of patient re- identification through comparing TCGA 
data with information from other data sets.

In summary, in order to ensure that clinical trial data 
sharing among the scientific community can be under-
taken in a meaningful and responsible manner, a set of 
data standards workflow processes must be put into place. 
The successful implementation of such processes will 
require investment in bringing together appropriately 
trained personnel possessing a broad range of relevant 
expertise that ensures that all standards associated with 
deposition of usable data sets into a centralized repository 
are met. Integral to the success of such efforts is the quality 
of shared data with common standard data elements to 
ensure usability and harmonization for secondary data 
interrogation.

Expert personnel training for data management and sharing
Efforts aimed at increasing clinical trial data sharing 
will yield poor results if there are too few scientists who 
possess the expert knowledge required to generate or 
use comparable shared data for secondary analyses. An 
adequately sized workforce that is expertly trained in 
the operational and technical aspects of data sharing is 
thus essential. Within traditional clinical research educa-
tion, the introduction of mandatory courses and course 
modules that specifically educate future investigators and 
personnel in all areas of data sharing will be valuable 
to ensure an adequately sized workforce. Educational 
programs could offer courses on the correct genera-
tion of sharable data to quantitative scientists and data 
scientists, with key in- class or online modules offered to 
medical students and clinicians slated to become or work 
closely with trialists. An example of these types of efforts 
include a freely accessible ‘Research Data Management 
and Sharing’ course already offered by the University of 
North Carolina at Chapel Hill and the University of Edin-
burgh. These types of courses are offered by a number of 
online providers, and can be taken for credit or audited, 
and thus offer training to trainees from lower- income 
or developing countries where financial support may be 
limited.49

In the future, international bodies that fund the 
training of the clinical trial workforce could make 
training researchers in data sharing another core compo-
nent of their initiatives. Governmental funding agen-
cies and foundations that sponsor medical research and 
training could also enlarge the scope of their programs to 
provide support for training on clinical trial design, with 
a focus on planning and implementation of data sharing. 
The Wellcome Trust, the National Institutes of Health, 
and the Bill and Melinda Gates Foundation are three 
examples of funders that impose a mandate for open- 
access publication and data sharing from research they 
support, and these and other funders could also add even 
stronger incentives by supporting data- sharing training 
of scholars.32 Furthermore, stakeholders, including large 
pharmaceutical companies, could contribute state- of- 
the- art, hands- on training in data sharing, simultaneously 
increasing education on the risks associated with data 
sharing (ie, IP, regulatory concerns, and patient confi-
dentiality). Other stakeholders, including professional 
societies such as SITC, have already held focused work-
shops on data sharing and have generated summarizing 
publications to educate leading industrial and academic 
researchers on current viewpoints, expectations, state- of- 
the- art technologies, and exemplary data- sharing plat-
forms that may be adopted at large to shift modalities for 
efficient and standardized data sharing.4 With the shared 
goal of creating and fostering a workforce that has the 
skills and knowledge to manage the operational and 
technical aspects of data sharing, training opportunities 
with clear guidelines and incentives can and should be 
provided by universities, funders, companies, and profes-
sional societies.

SUSTAINABILITY CHALLENGES
For data sharing to be successful, it must be sustainable, 
meaning it must be performed using a model where the 
costs of maintaining data and data- sharing resources can 
be equitably recuperated.32 This challenge is exacerbated 
by the fact that the size of some forms of biomarker data 
sets are growing rapidly, and in some cases, analysis of 
a single sample can generate hundreds of gigabytes of 
data.50 Currently, there exist a number of challenges in 
the implementation of sustainable data sharing, which we 
outline below.

Lack of understanding of data-sharing costs
To date, only a single comprehensive study has been 
undertaken to assess the costs of sustainable long- term 
data sharing.51 While this study was important, substan-
tially more work in this field is needed to fully understand 
data- sharing costs and how, precisely, overall costs are 
dependent on predetermined distinct variables of the 
data slated for sharing. Any future data- sharing landscape 
analysis should also address the following costs, and how 
these costs depend on the extent, complexity, and types 
of the data and data sets being shared:
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 ► Human resource costs, notably including the costs 
of responding to incoming data- sharing queries and 
requests, and personnel required for the facilitation 
of data sharing.

 ► Data sanitization and organization costs associ-
ated with making the data usable and comparable 
to secondary users, which requires common data 
elements for data set harmonization strategies.

 ► Infrastructure costs, including the costs of data storage 
and transfer to secondary users.

Unequitable costs of data sharing
Currently, the cost categories outlined above are typi-
cally supported by stakeholders or providers gener-
ating the data, and few mechanisms exist through 
which secondary data users may financially support 
the ongoing maintenance of the important data 
resources on which their secondary analyses or meta- 
studies are based.32 52 For lasting sustainable data- 
sharing models, it is imperative that end- user costs 
be distributed more equitably. Funding mechanisms 
through which researchers can support data that they 
wish to use should be developed. Any such mechanism 
would likely need to be overseen by an impartial body 

that would ensure fair and unbiased data access to 
secondary users. One benefit of such a body would 
be the centralization of data- use metrics to identify 
the features of data sets having the most utility to the 
biomedical research community. Importantly, shared 
equity of the costs of data access should not become 
a barrier to sharing in itself, and non- profit and/
or governmental funding mechanisms to support 
access to data for low- resource researchers must be 
developed.

‘Dependency hell’ in bioinformatic processing tools
Unlike most forms of clinical trial data, the raw state 
of biomarker data is typically an unprocessed, non- 
human- readable format that must be subsequently 
analyzed and converted to generate features making 
downstream analyses possible. Such raw formats 
include .bcl, .fastq, and .bam (sequencing); .nd2, 
.scn, .liff, and .zvi (imaging); and .fcs (flow cytom-
etry). Historically, bioinformatic tools used to analyze 
these data have typically been developed by academic 
research labs, and their continued maintenance and 
improvement is thus not guaranteed. Additionally, 
cascading problems may arise when shared packages 

Table 1 Recommendations to address practical challenges in clinical and biomarker data sharing

Challenge Recommendation

Infrastructure Early planning of the interactions and common technology between legal/contractual teams and other 
technical project architects/regulators to facilitate mutual agreements and enhance the clarity of informed 
consent documents

Educating key medical/technical personnel involved in handling biospecimens to ensure timely collection and 
processing of samples

Shared cloud- based storage space with real- time access and supercomputers in academic centers (with 
HIPAA compliance and resilience) to allow multi- core computational analyses that can be accessed by multi- 
center collaborators

Technology Selection of standardizable technological platforms for generation of comparable data

Use of supplemental bridging/ring studies to compare data- generating platforms and assess reproducibility 
and feasibility of data output harmonization across technologies

Establishment of patterns of patient response profiles to guide future response criteria and trial end points

Workforce Implementation of a data standards workflow process that allows data sharing to be meaningful and 
undertaken in a responsible manner

Availability of personnel encompassing a broad range of expertise to enable an end- to- end workflow, including 
well rounded oversight of regulatory, scientific, curation, and bioinformatics aspects of research

Targeted and well- supported training of expert data planning and data management personnel

Sustainability Creation of data- sharing models where the costs of maintaining data and data- sharing resources can be better 
acknowledged and equitably distributed across end users

Better defined cost factors, including required human resources for data sanitization and organization for 
comparability, in addition to infrastructure costs for storage and transfer

Bioinformatics tools used to read raw data files must be available long- term, and reliable readability tools 
should be maintained and provided in containerized formats

Increased recognition by academic promotion committees to incentivize data sharing

Publishing journals encourage data sharing whenever legally and ethically possible, according to Findable, 
Accessible, Interoperable, and Reusable (FAIR) guiding principles 56

HIPAA, Health Insurance Portability and Accountability Act.
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depend on multiple different and incompatible 
versions of the same tool, a phenomenon sometimes 
called ‘dependency hell’. Useful, sustainable data 
sharing for biomarker data requires that compat-
ible versions of tools be available and maintained.53 
One approach to address this problematic area is 
for the community (including academic journals) to 
insist that new data- processing tools be provided in a 
containerized format, such as Docker or Si.54 Further-
more, long- term, centralized storage of containerized 
tools should be incentivized and ideally supported 
by a governmental funding agency. The embrace of 
containers for bioinformatic tools will help prevent 
‘dependency hell’ and enable sustainable, useful data 
sharing of biomarkers.55

CONCLUSIONS
The SITC Clinical and Biomarkers Data Sharing 
Subcommittee analyzed the current hurdles impeding 
efficacy and made recommendations to set standards 
for data sharing in IO biomarker and clinical data 
sharing. The subcommittee’s recommendations to 
address the practical challenges described in this 
manuscript are summarized in table 1. Priorities 
include early planning of legal interaction networks, 
cloud- based data- sharing strategies to facilitate data 
access and analysis by all core members, ensuring 
that projects are managed by personnel with expert 
know- how of data standards workflow practices, the 
application of appropriate standardizable technolo-
gies and unifying protocols that are continuously reas-
sessed during their evolution, and that raw, usable, 
and comparable data outputs and storage methods be 
in place, with lasting and containerized bioinformatic 
algorithms that can continuously be used for their 
transformation and analysis.

The field of IO is rich in resources providing the 
means to treat cancer. However, there is currently no 
centralized database that hosts immuno- genomic data 
from studies involving immune checkpoint blockade, 
which would be a valuable resource for the IO commu-
nity. There is also a need to develop next- generation 
computational algorithms that allow the extraction of 
clinically useful information from the huge amounts 
of data being generated using advanced molecular 
and cellular tools. These efforts will be critical to 
ultimately enable the development of precision IO 
treatment. The field of human genomics mapping has 
already been challenged by many of these questions 
for the last 20 or so years and represents an excel-
lent resource for the IO field for questions of data 
management and sharing.

The ultimate goal of this work is to establish a 
culture of sharing clinical trial data in which effec-
tive incentives for data sharing exist and platforms for 
sharing clinical trial data are available, with appro-
priate data access models and with sufficient total 

capacity to meet demand. If more than one platform 
for data sharing exists, the different platforms need to 
be interoperable with adequate financial support for 
sharing clinical trial data, and with costs that are fairly 
allocated among stakeholders. In this ideal scenario, 
appropriate protections will be in place to minimize 
the risks of data sharing for all stakeholders and to 
minimize sharing disincentives. As a matter of course 
for best practices, shared clinical trial data need to 
be de- identified and modified in response to ongoing 
experience and feedback. The subcommittee set out 
to help to establish professional standards and to set 
expectations for responsible sharing of clinical trial 
data, together with requirements to be created by 
supporting organizations such as funders, medical 
journals, and professional societies (including SITC) 
as the best path forward, aiding the culture shift 
needed to implement responsible data sharing.
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