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The response of patients with recurrent glioblastoma multiforme to neoadjuvant immune

checkpoint blockade has been challenging to interpret due to the inter-patient and intra-

tumor heterogeneity. We report on a comparative analysis of tumor tissues collected from

patients with recurrent glioblastoma and high-risk melanoma, both treated with neoadjuvant

checkpoint blockade. We develop a framework that uses multiplex spatial protein profiling,

machine learning-based image analysis, and data-driven computational models to investigate

the pathophysiological and molecular factors within the tumor microenvironment that

influence treatment response. Using melanoma to guide the interpretation of glioblastoma

analyses, we interrogate the protein expression in microscopic compartments of tumors, and

determine the correlates of cytotoxic CD8+ T cells, tumor growth, treatment response,

and immune cell-cell interaction. This work reveals similarities shared between glioblastoma

and melanoma, immunosuppressive factors that are unique to the glioblastoma micro-

environment, and potential co-targets for enhancing the efficacy of neoadjuvant immune

checkpoint blockade.
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G lioblastoma multiforme (GBM) is a primary malignancy
of the central nervous system, with an incidence of 3.19
per 100,000 and a three-year survival rate of around 10%1.

The molecular heterogeneity of GBM, its resistance to standard
therapies, and immune evasion2–4 all contribute towards GBM
pathogenesis. By comparison, although clinical outcomes for
patients with advanced melanomas have historically been poor5,
advances in adjuvant checkpoint immunotherapies, and espe-
cially combination (anti-PD1+ anti-CTLA4) immunotherapies,
have demonstrated significant patient survival benefits6, to the
extent that melanoma has become a model cancer for under-
standing immunotherapy responses.

Recent reports of checkpoint immunotherapies in the neoad-
juvant setting suggest that such a regimen may ultimately yield
additional benefits7,8. For example, in a recent small randomized
trial for patients with high-risk resectable melanoma9, neoadju-
vant anti-PD1 monotherapy yielded modest response rates
(overall response rate [ORR] 25%, pathological complete
response [pCR] 25%) and low toxicity (8% grade 3 treatment-
related adverse events [trAEs]), while neoadjuvant anti-PD1 plus
anti-CTLA-4 combination therapy yielded higher response rate
(ORR 73%, pCR 45%), but substantial toxicity (73% grade 3
trAEs). In either therapy, immune correlates of response were
identified, suggesting that an optimized treatment regimen of
neoadjuvant checkpoint blockade may yield strong patient benefit
with reduced toxicity in high-risk melanoma. Similarly, recent
reports by some of us10 and others11–13 suggest that neoadjuvant
anti-PD1 therapy for patients with recurrent GBM can promote a
survival benefit. For the GBM study, neoadjuvant and adjuvant
anti-PD1 therapy (pembrolizumab) were tested in a randomized,
multi-institution clinical trial10. Parallel to the neoadjuvant
immunotherapy trial in melanoma9, elevated immune correlates
of response were detected in resected tumors, but were largely
limited to the patients in the neoadjuvant treatment arm. The
effectiveness of neoadjuvant checkpoint blockade should be
reflected in the pathophysiological and molecular features pre-
sented in the tumor, but the exact nature of those features will
exhibit similarities and differences across tumor settings, and
from patient-to-patient, and so may be challenging to interpret.

Here, we report on an in-depth, spatially resolved comparative
analysis of tissues collected from patients with recurrent GBM
and high-risk melanoma, both treated with neoadjuvant immune
checkpoint blockade (ICB) (Fig. 1a). We utilize the melanoma
tumor analyses to guide the interpretation of the GBM tissues by
making three distinct sets of comparisons. First, we compare the
levels of a protein panel collected from microscopic compart-
ments within both classes of tumors14. Second, we develop an
approach called micro-tumor analysis (Fig. 1b) to computation-
ally determine the correlates of cytotoxic CD8+ T cells and
treatment response in both tumors, as well as tumor growth in
GBM. Third, we develop a method called immune neighbor
analysis (Fig. 1c) to map out the immune cells in both tumors and
compare their degree of immune cell–cell interaction, which
was defined by the number of immune cells surrounding any
specific immune cell, averaged across the whole tissue section.
Broadly, we present a framework to uncover pathophysiological
and molecular features that determine the effectiveness of
immunotherapies.

Results
Characteristics of patients with recurrent GBM and high-risk
melanoma. In a recent multi-institution clinical trial
(NCT02852655), we showed that patients with recurrent GBM,
who were randomized to receive neoadjuvant pembrolizumab
(pembro) with continued post-surgical adjuvant therapy, had

significantly extended overall survival (OS) compared to patients
who were randomized to receive post-surgical adjuvant pembro
alone10. Bulk RNA sequencing of the tumors revealed that
neoadjuvant pembro treatment was associated with upregulation
of T cell and interferon-gamma (IFN-γ) genes, and down-
regulation of cell cycle genes. This analysis yielded a 23-gene
signature that was associated with longer OS and progression-free
survival (PFS) as determined by a modified response assessment
in neuro-oncology (RANO) criteria15, making it a useful mole-
cular predictor of clinical response.

To study the pathophysiological and molecular factors of
therapy response at a higher resolution, we examined tumor
samples collected from 13 follow-on patients with recurrent
GBM, who received anti-PD1 off label 14 ± 5 days before surgical
resection (Fig. 1a, top and Supplementary Table 1). Two patients
had successive recurrences and were pre-treated with pembro
before each surgery. One patient had multifocal tumor, and
specimens were collected from the original tumor location and at
a secondary site (Supplementary Table 1). In total 18 tumor
samples were collected.

Unlike the original clinical trial, where patients were heavily
screened for eligibility to ensure uniform clinical characteristics
(i.e., first or second recurrence, similar tumor size, and low
corticosteroid treatment levels), the follow-on patients here have
varying clinical characteristic (Supplementary Table 1), preclud-
ing the direct comparison of their RANO clinical outcomes.
Therefore, to categorize the therapeutic response, we analyzed the
resected tumors by targeted mRNA analysis, specifically looking
at the 23-gene molecular response signature of the original trial.
Hierarchal clustering of the tumors using this gene signature
yielded a cluster characterized by high T cell and IFN-γ and low
cell cycle gene expression (Fig. 1d). We defined this group as the
molecular responder (mR) group. Tumors in a second cluster
with the opposite signature were defined as the molecular
nonresponder (mNR) group.

As a reference, we also examined baseline and on-treatment
melanoma tumors from 23 patients with high-risk resectable
melanoma, who were enrolled in a randomized phase 2 study of
neoadjuvant nivolumab (nivo) versus combined ipilmumab with
nivolumab (ipi-nivo) (Fig. 1a, bottom and Supplementary
Table 2)9. The patients were categorized as responder (R) or
nonresponder (NR) based on the response evaluation criteria in
solid tumors (RECIST) criteria, with higher lymphoid infiltrates
observed in responders to both therapies.

Proliferation signature is localized to the tumor compartments
of GBM. We profiled melanoma and GBM tissues using a spa-
tially resolved multiplexed protein analysis approach16, char-
acterizing the expression of up to 40 immuno-oncology (IO)
proteins in formalin-fixed paraffin-embedded (FFPE) tissue slices
(Fig. 2). Including controls, 31 IO proteins were measured in both
tumors, two proteins were measured only in melanoma, and 11
proteins were measured only in GBM (Supplementary Table 3).

In both tumors, CD45 was employed as a visualization marker
to identify microscopic immune regions of interest (ROIs). For
melanoma, ROIs were defined by a manually set signal threshold
from fluorescent anti-CD45 to create a custom mask that
delineates the immune and tumor compartments (Fig. 2a). We
defined up to seven custom ROIs per tissue, with a focus on the
immune-cell-rich compartments. Overall, we analyzed 208 ROIs
across 39 melanoma tumors, of which 10 are baseline NR, 11 are
baseline R, 10 are on-treatment NR, and 8 are on-treatment R
(Supplementary Table 2). In the immune compartments of
melanoma tissues, proteins implicated in immune response were
enriched in the responders after treatment (Fig. 2b–d), including
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CD8A, CD19/CD20, and CD45RO. This indicates higher
lymphoid infiltration and activation in responders, consistent
with the previous analyses9.

GBM tumors are different from melanoma tumors in terms of
size and immune infiltration, warranting a different ROI
approach. The GBM tumors are both much larger in cross

section (10–30 times), and have far fewer (and smaller) immune
regions that can be far apart. Applying the custom-masked ROI
strategy on GBM would have required a prohibitively large
number of ROIs, which would only sample a very small portion
of the tumor after CD45 threshold is applied. Thus, we used an
alternative approach designed to provide a better representative
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sampling of the GBM tumors. We defined up to 16 geometric
ROIs per tissue (3–4 times more than melanoma), choosing
representative areas that were immune-cell rich and immune-cell
poor across the entire tumor (Fig. 2e). We used fluorescent anti-
CD45 staining to guide the identification of these areas, without
masking for CD45. Furthermore, we used image analysis to
quantify the proportion of immune cells (CD45+) for each ROI
and defined >25% CD45+ as immune rich and <25% CD45+ as

immune poor via hierarchal clustering (Supplementary Fig. 1a–c).
Three representative ROIs are shown (Fig. 2e), two are immune
rich (37.1% and 50.4%) and one is immune poor (1.7%). Spatial
protein profiling was performed on 14 of the 18 resected GBM
tumors, 6 were mRs and 8 were mNRs (Supplementary Table 1).
Overall, a total of 168 ROIs were analyzed, of which 55 were
immune rich and 113 were immune poor. As expected, immune-
related proteins, including CD45RO, CD20, CD4, CD8A, CD68,

Fig. 1 Study schema and specimens collected. a Top panel: Patients with recurrent GBM were treated with off-label neoadjuvant anti-PD1 ~14 days before
surgical resection. Tumors were collected for bulk RNA analysis and FFPE sections. Bottom panel: Patients with high-risk resectable melanoma were
enrolled in a randomized phase 2 trial (NCT02519322). Tumors were collected at baseline and on-treatment for FFPE sections. Patients were randomized
to receive neoadjuvant nivolumab (green) or ipilimumab plus nivolumab (red). b Scheme of micro-tumor analysis. A heterogeneous tumor is analyzed in
smaller parts (micro-tumors), where each micro-tumor is deeply characterized and has its own local therapy response (e.g., abundance of T cells). These
micro-tumors are used to build a model, which can reveal the important variables that determine the response. c Scheme of immune neighbor analysis.
Immune cell–cell interaction is quantified by counting the number of adjacent immune-cell neighbors for each immune cell. The same density of cells can
yield different average neighbor numbers. d Molecular response of neoadjuvant anti-PD1 treatment in recurrent GBM determined by bulk gene signatures.
The genes and samples were arranged with hierarchical clustering. mNR molecular nonresponder, mR molecular responder, FFPE formalin-fixed paraffin-
embedded, RECIST response evaluation criteria in solid tumors, ORR overall response rate, trAEs treatment-related adverse events. Green coloration
represents low expression; red coloration represents high expression. Schemes in (a), (b), and (c) were created with BioRender.com. Source data are
provided as a Source Data file.

Fig. 2 Regions of interest definition and differential protein expression. a Fluorescent micrograph of a representative region in a melanoma sample
(n= 39) stained for nuclei (blue), CD45 (red), and S100B (green). The immune compartment (contoured with red lines) and the tumor compartment
(contoured with green lines) were identified via thresholding the fluorescence intensity of CD45 marker. Scale bar is 100 µm. b–d Volcano plots of two-
sided Mann–Whitney U-test comparisons of the protein expressions between RECIST responders and nonresponders in baseline (blue) and on-treatment
(red) melanoma samples. The samples were either from the nivolumab (nivo) cohort (b) (n= 9 nonresponders and 3 responders at baseline, n= 7
nonresponders and 2 responders on-treatment), ipilimumab plus nivolumab (ipi-nivo) cohort (c) (n= 2 nonresponders and 8 responders at baseline, n= 3
nonresponders and 5 responders on-treatment), or both arms combined (d) (n= 11 nonresponders and 11 responders at baseline, n= 10 nonresponders
and 7 responders on-treatment). Expression of proteins was assessed in the immune compartments of the tissue and quantified as the average count per
area of assayed tissue. e Fluorescent micrograph of a representative region in a GBM sample (n= 14) stained for nuclei (blue), CD45 (red), and GFAP
(green). Three representative geometric ROIs (in white) were designated as immune-cell rich (immune cell proportion: 37.1% and 50.4%) and immune-
cell poor (immune cell proportion: 1.7%). Scale bar is 100 µm. f, g Volcano plots of two-sided Mann–Whitney U-test comparisons of the protein
expressions between molecular responders (mR) and molecular nonresponders (mNR) in GBM samples treated with pembrolizumab (pembro). The
responses were generated based on a 23-gene molecular signature. Expression of proteins was quantified as average count per area of assayed tissue,
which were either in the immune-cell rich regions (f) (n= 8 mNRs and 4 mRs) or immune-cell poor regions (g) (n= 8 mNRs and 6 mRs). For plots in
(b–d), (f), and (g), the dashed horizontal lines represent the p value cutoffs (p < 0.10 and p < 0.05) and the dashed vertical lines represent the effect size
cutoffs (effect size > |1|). ROIs regions of interest. Source data are provided as a Source Data file.
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CD11c, ICOS, and STING are higher in the immune-rich ROIs
relative to the immune-poor ROIs (Supplementary Fig. 1d).

In contrast to the analysis of melanoma tumors, we did not
identify proteins that differentiated mRs from mNRs in the
immune-rich regions of GBM (Fig. 2f). However, we did observe
higher Ki67 in the immune-poor regions for molecular
nonresponders (p= 0.03), suggesting that the tumor was
proliferating in those patients (Fig. 2g). This observation is
consistent with the bulk transcriptional signature, which exhibits
upregulation of cell cycle genes in mNRs (Fig. 1d). Here, we could
definitively localize this proliferation signature to the tumor-
dominant compartments of the tissue.

This analysis points to some stark differences between
melanomas and GBMs treated with neoadjuvant ICB. First, the
melanoma tumors, whether treated with nivo only or ipi-nivo,
generally exhibited high levels of immune cell infiltration, and the
average levels of several proteins in the immune-rich tumor
compartments correlated with therapy response. The GBM
tumors, by contrast, are characterized by fewer immune cell
infiltrates, and those infiltrates reside in clusters of just a few cells.
Furthermore, the only protein level that correlated with the mNR
classification was the proliferation marker, Ki67, and that was
elevated in the immune-cell poor regions of the tumors. These
results demonstrate that the effect of neoadjuvant pembro in
recurrent GBM is difficult to resolve, warranting a deeper
analytical approach.

Micro-tumor analysis reveals proteins that correlate with CD8
presence. To overcome inter-patient and intra-tumor hetero-
geneity and extract additional biological insights of treatment
response, we developed a method called micro-tumor analysis,
which treats each ROI as an independent microscopic tumor,
each presenting its own local therapy response (Fig. 1b). We first
hypothesized that a positive response to checkpoint inhibitor
therapy, for either melanoma or GBM, would be reflected by CD8
+ T cell infiltrates. To this end, we applied a multivariate mod-
eling approach, called partial least squares regression (PLSR)17–21,
with the goal of determining the correlates of CD8 presence in
both melanoma and GBM. PLSR is designed to extract linear
relationships between a matrix X of independent variables and a
matrix Y of dependent variables through the formation of PLS
components and dimensional reduction. Here, the original data is
transformed into new dimensions that are linear combinations of
the original variables, similar to principal component analysis,
but in a way that maximizes the covariation of X with Y. Thus,
the PLS components derived from this approach will provide
some percentage of explanation of the variation in Y, and reveal
which variables in X are most important. The orthogonality of the
PLS components ensures that there are no issues of multi-
collinearity in the model. Notably, this analysis yields an unbiased
comparison between the two tumor types.

We applied PLSR on the immune-rich compartments of the
on-treatment tumors using CD8 as the dependent variable (Y)
and the other measured proteins as independent variables in X to
yield predictions of CD8 presence (Fig. 3a–d). In the analysis of
melanoma samples treated with nivo, melanoma samples treated
with ipi-nivo, and GBM samples treated with pembro, the
optimal number of PLS components are 3, 4, and 6, respectively
(Supplementary Fig. 2a–c). Plots of actual observations versus
model predictions demonstrate that the models accurately
capture the variance in the inputs (R2X) and outputs (R2Y),
and have excellent predictability (Q2 > 0.99) (Fig. 3a–c, top
panels). In the two melanoma plots, the responder ROIs tend to
cluster in the high CD8 region (top right), while nonresponder
ROIs tend to cluster in the low CD8 region (bottom left). This is

consistent with the differential analysis described above
(Fig. 2b–d) and in the previous studies22. In the case of GBM,
the molecular responder ROIs also tend to cluster in the high
CD8 region (top right), but the molecular nonresponder ROIs are
found across the full spectrum of CD8 levels.

To determine the important variables in X, we looked at the
variable importance of projection (VIP) score for each variable,
which is a weighted sum of the contributions of that variable,
from all the PLS components, toward predicting CD8 presence.
Plots of VIP versus model coefficients reveal the important
proteins (VIP > 1) in the model, and whether they are negatively
(−ve coefficient) or positively (+ve coefficient) correlated with
CD8 (Fig. 3a–c, bottom panels). For proteins measured only in
GBM, we observed that ICOS is positively correlated with CD8,
while HLA-DR and STING are negatively correlated with CD8
(Fig. 3c, bottom panel). Of the proteins that were measured across
all three tumor datasets, we observed that CD4, CD45RO, GZMB,
Ki67, PTEN, Bcl-2, CD19/20, and Pan-CK are positively
correlated with CD8 in GBM and in at least one melanoma
treatment arm (Fig. 3d). In addition, we observed that pSTAT3 is
negatively correlated with CD8 in GBM and, to a much smaller
degree, in melanoma (nivo). On the other hand, we observed
that β2M and PD1 are positively correlated with CD8 only in
melanoma, while the macrophage marker CD68 is negatively
correlated with CD8 only in GBM.

To test the utility of the PLSR approach, we compared its
performance with a simple correlation analysis for CD8 in GBM
(Supplementary Fig. 2d). For 4 of the 12 important proteins (VIP
> 1) identified by the PLSR analysis (Pan-CK, STING, CD68, and
HLA-DR), their model coefficients had a different sign from their
correlation coefficient (r) with CD8. Furthermore, although
pSTAT3 is the most negatively correlated protein with CD8 in
the PLSR model, the corresponding r metric suggests no
correlation (−0.05). These results highlight two main advantages
of using PLSR over a simple correlation analysis. First, PLSR is
designed to address the problem of multicollinearity among
variables. A simple correlation analysis between two variables can
lead to confounding results if there is a third variable numerically
related to both variables of interest. Second, PLSR provides a
statistical framework (VIP) to identify variables that exhibit
significant covariation with CD8. Whereas in a correlation
analysis, one needs to subjectively decide on how to interpret
the r metric.

To test whether the PLSR model was sensitive to changes in the
25% CD45 cutoff value, we performed the same analysis at 20%
and 30% CD45 cutoff. We observed that the proteins with the
highest statistical importance (leftmost proteins, VIP > 1.15)
remain unchanged (Supplementary Fig. 2e), suggesting that small
changes in the immune cell cutoff do not affect the results.
Overall, we found that the PLSR approach is robust, and the top
correlates of CD8 presence are preserved between both tumor
classes, suggesting that a comparison of melanoma and GBM
immune-rich ROIs could be carried out despite using different
ROI strategies.

Micro-tumor analysis reveals proteins that correlate with
treatment response. From the differential analysis (Fig. 2f–g), we
have shown in GBM that there is no single measured protein that
can clearly discriminant mRs from mNRs. Thus, we sought to
determine the minimum variables that enable such discrimination,
and hypothesized that these variables may have biological sig-
nificance in determining treatment outcomes. To this end, we
employed partial least squares (PLS) discriminant analysis (PLS-
DA), which builds a classification model using the measured pro-
teins in X and a categorical variable in Y (i.e., RECIST or molecular
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responder= 1, RECIST or molecular nonresponder= 0). The
classification performance of the model is evaluated by computing
the area under the receiver operating characteristics (ROC) curve
(AUC). To determine the minimum variables required for accurate
discrimination (AUC > 0.90), we successively removed proteins of
low importance (VIP < 0.8 and coefficient < |0.1|) and performed
PLS-DA on the decreasing subsets of proteins.

We applied this PLS-DA workflow on the immune compart-
ments of the on-treatment melanoma (Supplementary Fig. 3a–b).
In the nivo treatment arm, we found that the most important
protein is β2M, which is correlated with RECIST response and
enables perfect classification of R and NR ROIs (AUC= 1.0)

(Fig. 3e). In the ipi-nivo treatment arm, the most important
proteins are CD8, AKT, and Beta-Catenin, which enable perfect
classification of R and NR ROIs (AUC= 1.0). Here, CD8 is
correlated with response, while AKT and Beta-Catenin correlate
with nonresponse (Fig. 3f). PLS-DA analysis on the combined
treatment arms revealed that the most important proteins are
β2M, Beta-Catenin, CD19, and CD8A, which together can
accurately discriminate R and NR ROIs (AUC= 0.998) (Supple-
mentary Fig. 4a). Here, CD8, CD19, and β2M are correlated with
response, while Beta-Catenin is correlated with nonresponse
(Supplementary Fig. 4b, c). These results suggest that CD8, CD19,
and MHC Class I antigen presentation promote treatment
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response, while the presence of Beta-Catenin suppresses that
response. Overall, these observations recapitulate the findings in
the differential analyses (Fig. 2b, d) and PLSR analyses (Fig. 3a, b,
bottom panel), demonstrating the self-consistency of distinct
analysis approaches.

In the PLS-DA analysis of immune-rich regions of GBM
(Supplementary Fig. 5a), the most important proteins are CD11c,
CD163, CD44, CD66B, and PTEN, which can classify the ROIs
with high accuracy (AUC= 0.959) (Fig. 3g). Here, CD11c and
PTEN are correlated with molecular response, while CD163,
CD44, and CD66B are correlated with molecular nonresponse
(Supplementary Fig. 5b, c). When we applied the prediction
formula at the tissue level, we found that these 5 proteins can
separate the tissues of mRs from mNRs (p= 0.03), and accurately
classify those tissues (AUC= 0.907) (Supplementary Fig. 5d).
These data suggest that CD11c+ cells may promote molecular
response, while neutrophils (CD66B) and M2 macrophages
(CD163) suppress that response. Furthermore, consistent with
the correlations observed in this analysis, CD44 has been
associated with cellular mobility and GBM aggressiveness23 and
PTEN loss has been associated poor outcomes in recurrent GBM
treated with neoadjuvant anti-PD111.

In contrast to the immune-rich regions of GBM, PLS-DA
analysis of the immune-poor regions with the full protein panel
yielded modest discrimination of mR and mNR ROIs (AUC=
0.889). While further variable reduction does not improve the
AUC, we found that the remaining most important proteins
(Ki67, AKT, B7-H3, and CD34) can still modestly discriminant
mR and mNR ROIs (AUC= 0.861) (Supplementary Fig. 6). Here,
Ki67, AKT, and B7-H3 are correlated with molecular non-
response, while CD34 is correlated with molecular response. This
observation reinforces the importance of tumor proliferation as a
predictor of therapy response in the tumor-dominant regions
of GBM.

Micro-tumor analysis reveals potential drug targets in GBM.
As described in the differential analysis above, the tumor-
dominant regions of GBM tend to have higher Ki67 expression in
mNR tissues (Fig. 4a). To determine the correlates of Ki67, we
applied PLSR on the immune-poor regions of GBM, using Ki67
in Y and all the other proteins in X. As shown in the actual versus
predicted plot (Fig. 4b), the optimal six-component model
(Supplementary Fig. 7a) captures the variance in the inputs and
outputs, and has good predictability (Q2= 0.988). Although
molecular nonresponder ROIs are found across the full spectrum
of Ki67 levels, most of them tend to cluster at high levels of Ki67
(top right corner). In contrast, the molecular responder ROIs
tend to cluster at low levels of Ki67 (bottom left corner). The VIP
versus coefficient plot reveals that VISTA, AKT, Bcl-2, IDO-1,

B7-H3 are positively correlated (coefficient > 0.1) with Ki67
(Fig. 4c), with IDO-1 and B7-H3 having the strongest correlation
in the model (Fig. 4c). In the plot of B7-H3 versus IDO-1,
molecular nonresponder ROIs tend to cluster in the top right, and
coincide with high tumor proliferation (Fig. 4d).

To test whether Ki67 from the minority immune cells can
confound these results, we repeated this analysis at 20% and 30%
CD45 cutoff (Supplementary Fig. 7b). We found that the proteins
with the highest statistical importance, including VISTA, B7-H3,
and IDO-1, remain unchanged. In addition, we found that
there is no correlation between Ki67 and immune-cell
proportion (r2= 0.07), suggesting that the immune cells con-
tribute to very little of the measured Ki67 signal in the immune
poor regions (Supplementary Fig. 7c). Finally, we also carried out
a PLSR analysis on the immune poor regions using CD8 as Y and
all other proteins (including Ki67) in X. This analysis confirms
that Ki67 is not correlated with CD8 in the immune poor regions
(Supplementary Fig. 7d), which is the opposite of the immune
rich regions where immune activation is more likely (Fig. 3c,
bottom panel). Overall, these analyses suggest that the measured
Ki67 mostly comes from tumor cells in the immune-poor regions,
and that co-targeting B7-H3 or IDO-1 in neoadjuvant ICB
treatment may potentially improve the treatment outcome for
patients with recurrent GBM.

Immune neighbors are associated with treatment response in
melanoma. Immune cells often form functional clusters in order
to activate tumor-killing programs. To explore this effect, we
developed immune neighbor analysis (Fig. 1c), which uses
machine-learning-based image analysis to map out the immune
cells in the tumor and quantitate the immune cell–cell interaction
(Fig. 5)24,25. Each immune cell (CD45+) was assigned to a
neighbor number, representing the number of immune cells
surrounding a given immune cell, and then individual neighbor
numbers are averaged across the whole tissue. Overall, the mel-
anoma tissues have a higher mean immune neighbor number
than GBM tissues (Fig. 5a and Supplementary Fig. 8), consistent
with what is seen in the fluorescent micrographs of these tumors
(Fig. 2a, e). Furthermore, in melanoma we found that responders
have a higher neighbor number than nonresponders at baseline
(p= 0.061), and particularly during on-treatment (p= 0.001)
(Fig. 5b). However, in GBM (Fig. 5c), the mean immune neighbor
number does not differentiate mRs from mNRs (p= 0.755)
(Fig. 5d), suggesting the presence of immunosuppressive CD45+
populations in the tumor microenvironment.

To examine the correlates of immune clustering, we applied
PLSR on the immune-rich regions of both tumors, using the
immune neighbor number in Y and all measured proteins in X
(Supplementary Fig. 9). The resulting models have excellent

Fig. 3 Micro-tumor analyses reveal proteins that correlate with CD8 presence and treatment response. a–c PLS regression analysis of immune-rich
regions of interest with CD8A as output in melanoma samples treated with nivolumab (nivo) (a), melanoma samples treated with ipilimumab plus
nivolumab (ipi-nivo) (b), and GBM samples treated with pembrolizumab (pembro) (c). Top panels: plots of actual observations versus model predictions of
CD8A expression. Bottom panels: plots of variable importance in the projection (VIP) versus model coefficients. The dashed horizontal line represents the
VIP > 1.0 cutoff and the dashed vertical line is where the model coefficient is 0. d Heat map summarizing the important (VIP > 1.0) CD8A predictors that
were measured in both melanoma and GBM. Red coloration represents positive coefficients, and blue coloration represents negative coefficients. e–g PLS
discriminant analysis of immune-rich regions of interest with treatment response as output in melanoma samples treated with nivolumab (e), melanoma
samples treated with ipilimumab plus nivolumab (f), and GBM samples treated with pembrolizumab (g). The predictors of lower importance (VIP < 0.8,
coefficient < |0.1|) were iteratively removed to determine the minimum set of predictors that enables accurate (AUC > 0.90) classification of RECIST or
molecular responder and nonresponder ROIs. Shown are the model prediction equations and box plots of the final prediction model versus treatment
response for individual ROIs. The horizontal line in each box represents the median sample value, the ends of the box represent the 25th and 75th
percentiles, and the whiskers extend from the ends of the box to the outer most data points. Inset, the area under the receiver operating characteristics
curve (AUC). ROIs regions of interest. Response for melanoma and GBM are based on RECIST criteria and a 23-gene molecular signature, respectively.
Source data are provided as a Source Data file.
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predictability for both melanoma treatment arms (Q2 > 0.98) and
modest predictability for GBM (Q2= 0.60). The important
correlates of immune clustering and their coefficients of the
three tumor datasets are summarized in Fig. 5e. In the two
monotherapy sets (GBM pembro and melanoma nivo arm), we
observed that similar proteins are positively correlated with
immune neighbor number, including β2M, CD4, CD45RO, and
PD1. Interestingly, we observed that in GBM, immune neighbor
number is negatively correlated with CD8 and GZMB, whereas in
melanoma (ipi-nivo), immune neighbor number is positively
correlated with CD8. This suggests that immune cell–cell
interaction in GBM may play a role in tempering CD8 presence
and activity.

Discussion
ICB cancer immunotherapies have exhibited remarkable progress,
although pan-cancer success has been elusive. Two extreme
examples are melanoma, which serves as a model for cancer
immunotherapy response, and GBM, which provides a counter-
example. We hypothesized that an in-depth comparison of high-
risk melanoma and recurrent GBM tumors, resected from
patients following neoadjuvant ICB therapy, might yield insights
into improving ICB immunotherapies for treating GBM. To test
this hypothesis, we coupled spatially resolved tumor molecular
profiling with micro-tumor analysis (Fig. 1b) and immune

neighbor analysis (Fig. 1c) to analyze thin FFPE tumor sections
resected from 13 patients with recurrent GBM (treated with anti-
PD1) and 23 patients with high-risk melanoma (treated with anti-
PD1 ± anti-CTLA4). For the melanoma cohorts, patients were
classified using standard RECIST criteria of treatment outcome.
For the GBM cohort, we used an established10 23-gene tran-
scriptional signature of therapy response to classify the patients as
mRs or mNRs (Fig. 1d). This molecular response signature is
characterized by upregulation of T cell and interferon-gamma
(IFN-γ) genes, and downregulation of cell cycle genes. This
downregulation of cell cycling appears to be unique to GBM, as
this was not detected in similarly treated melanoma tumors in a
different study26.

We found major pathophysiological differences between the
tumor classes (Fig. 2a, e). Melanoma tumors, especially in
responders, exhibit extensive immune-cell rich areas, while
immune-cell rich regions within GBM tumors were sparse and
contained just a few cells. This was confirmed by quantitative
immune neighborhood analysis (Supplementary Fig. 8), which
revealed that higher immune cell–cell interaction is predictive of
therapy response in melanoma (Fig. 5b), but not in GBM
(Fig. 5d). Further, in the immune rich-regions of melanoma,
several proteins, including CD19/20, CD8, and CD45RO, are
enriched in RECIST responders (Fig. 2d) while for GBM tumors,
no measured proteins are enriched in mRs or mNRs (Fig. 2f).

Fig. 4 Micro-tumor analysis reveals correlates of tumor proliferation. a Box plots of Ki67 expression in the immune-poor regions of interest in GBM
samples treated with pembrolizumab (Pembro) (n= 8 mNR and 6 mR). The horizontal line in each box represents the median sample value, the ends of
the box represent the 25th and 75th percentiles, and the whiskers extend from the ends of the box to the outer most data points. The comparison was
made using a two-sided Mann–Whitney U-test (U= 7). b, c PLS regression analysis of immune-poor regions of interest with Ki67 as output in GBM
samples treated with pembrolizumab. Plot of actual observations versus model predictions of Ki67 expression (b). Plot of variable importance in the
projection (VIP) versus model coefficients (c). The dashed horizontal line represents the VIP > 1.0 cutoff and the dashed vertical line is where the model
coefficient is 0. d Plot of B7-H3 versus IDO-1, color-coded with Ki67 level (red: high, blue: low). mNR molecular nonresponder, mR molecular responder.
Molecular responses are based on a 23-gene molecular signature. Source data are provided as a Source Data file.
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Thus, the challenge in resolving the effect of neoadjuvant pembro
in recurrent GBM prompted us to develop a data-driven mod-
eling approach based upon two hypotheses. First, the general
observation that clinical response to ICB is often accompanied by
the infiltration of CD8+ T cells into the tumor tissue27,28 suggests
that molecular markers of T cell infiltration may also provide

markers of therapy response. Second, immune-cell depleted
regions within GBM tumors may have immunosuppressive
characteristics that are preventing CD8+ T cell infiltration.

We utilized PLS analysis to identify proteins within immune-
rich regions that were either predictive of CD8 level, treatment
response, or immune cell–cell interaction. This analysis revealed

Fig. 5 Immune neighbors are associated with treatment response in melanoma. Individual immune cells were identified and mapped out in the tumor,
and the number of immune cells adjacent to each immune cell was enumerated and averaged across the tumor. a Immune cell density maps of
representative melanoma samples from responder and nonresponder at baseline and on-treatment. The average number of immune neighbors for each
tissue is indicated at the bottom left. b Box plots of the average number of neighbors in melanoma samples at baseline (left) and on-treatment (right) (n=
10 nonresponders 11 responders at baseline, n= 10 nonresponders and 7 responders on-treatment). Comparisons were made using two-sided
Mann–Whitney U-tests (U= 28 for baseline, U= 4 for on-treatment). c Immune cell density maps of representative GBM samples from molecular
responder and nonresponder. The average number of immune neighbors for each tissue is indicated at the bottom left. d Box plots of the average number
of neighbors in GBM samples (n= 8 mNR and 6 mR). Comparisons were made using two-sided Mann–Whitney U-tests (U= 21) e, Heat map summarizing
PLS regression analyses of immune-rich regions of interest with the average neighbor number of those regions as output. Shown are important (VIP > 1.0)
neighbor number predictors that were measured in both melanoma and GBM. Red coloration represents positive coefficients, and blue coloration
represents negative coefficients. For box plots in (b) and (d), the horizontal line in each box represents the median sample value, the ends of the box
represent the 25th and 75th percentiles, and the whiskers extend from the ends of the box to the outer most data points. Response for melanoma and GBM
are based on response evaluation criteria in solid tumors (RECIST) criteria and a 23-gene molecular signature, respectively. VIP variable importance in the
projection. Source data are provided as a Source Data file.
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similarities and differences between the two tumor classes
(Figs. 3d–g and 5). For example, six proteins, including CD4 and
CD45RO, are positive predictors of CD8 in both GBM and at
least one of the two melanoma cohorts. We also observed a
negative correlation of pSTAT3 with CD8 in both the GBM and
melanoma (nivo) tumors, consistent with literature reports that
STAT3 signaling may mediate immunosuppression29–31. Nota-
bly, only in GBM, the macrophage marker CD68 is negatively
correlated with CD8. In melanoma, β2M, CD8, and CD19/20
are positive predictors of RECIST response, while AKT and Beta-
catenin are negative predictors (Fig. 3e, f and Supplementary
Fig. 4). In GBM, PTEN and CD11c are positive predictors of
molecular response, while CD44, CD66B, and CD163 are negative
predictors (Fig. 3g and Supplementary Fig. 5). Furthermore,
immune cell–cell interaction is negatively correlated with CD8
and GZMB in GBM (Fig. 5e), but positively correlated with CD8
in melanoma (ipi-nivo arm).

Together, the differences between the two tumor classes are
striking. Unlike melanoma, CD8 presence and MHC class I
antigen presentation does not predict therapy response in GBM.
Instead, GBM molecular response to ICB appears to depend upon
signatures of tumor aggressiveness (pSTAT3, PTEN, and
CD44)11,30,32 and on the presence of neutrophils and myeloid
cells, which have been implicated in glioma progression and
treatment resistance33,34. In fact, the potential role of CD68+
CD163+ cells in suppressing immune effector activity has been
proposed in pembro-treated GBM tumors12. Unique also to GBM
is the observation that immune cell–cell interaction negatively
correlates with CD8 and GZMB. This is consistent with the fact
that myeloid-derived suppressive cells (MDSCs), including
tumor-associated macrophages (TAMs), can indirectly (via reg-
ulatory B cells)35 or directly36 suppress CD8+ T cell function,
including mobility36. Macrophage depletion, via colony-
stimulating factor 1 receptor (CSF-1R) inhibition, has been
shown to increase CD8+ T cell tumor infiltration in tumor-
bearing mice, synergizing with anti-PD-1 treatment36. Indeed,
there exists ongoing phase I trials that use CSF-1R inhibitors
(BLZ945 or Cabiralizumab) in combination with anti-PD1 in
solid cancers, including GBM (NCT02526017 and
NCT02829723)37,38.

We further analyzed the immune-poor regions of GBM, since
those comprised (by far) the largest area fraction in all GBM
tumors. That analysis revealed higher Ki67 expression in mNRs,
suggesting tumor cell proliferation (Figs. 2g and 4a). A PLSR
analysis revealed that VISTA, AKT, Bcl-2, IDO-1, B7-H3 levels all
positively correlate (coefficient >0.1) with Ki67 (Fig. 4c), which
are consistent with recent literature. For example, VISTA-
deficient murine glioma models are highly resistant to tumor
induction35. Although the precise role of VISTA is unclear39,
VISTA-expressing antigen-presenting cells can inhibit T cell
proliferation and cytokine production in vitro40.

The two strongest positive correlates of tumor growth are B7-H3
and IDO-1 (Fig. 4d), both of which are emerging immunotherapy
targets for GBM41,42. In fact, mNR patients exhibited the highest
levels of B7-H3, IDO-1, and Ki67. IDO-1, which is interferon-
inducible43, metabolizes tryptophan (Trp) along the L-kynurenine
pathway and correlates with decreased patient survival44. Reduced
Trp levels can cause cell cycle arrest in immune cells, and cause T-
cells to become anergic45. IDO-1 inhibition plus PD-1 blockade was
not successful in a Phase III trial on melanoma patients46 but has
not been clinically tested for GBM47.

B7-H3 strongly associates with Ki67 within immune-poor
regions of GBM. It is a CD28-family immune checkpoint that
plays roles in T-cell suppression in glioma48. In fact, in a recent
large study of immunotherapy-related genes in aggressive glio-
mas, low expression of B7-H3 emerged as the single best

predictor of survival49. B7-H3 is expressed on immune cells (such
as antigen-presenting cells or macrophages) and tumor cells and
has an inhibiting influence on both natural killer (NK) cells and
cytotoxic T cells50. Our data suggest that IDO-1 inhibition, or B7-
H3 blockade, when used in combination with anti-PD1, may
reduce tumor proliferation in GBM and perhaps improve therapy
responses.

The two melanoma treatment cohorts exhibited some differences
which should be interpreted with caution due to their small indi-
vidual cohort sizes9. Notable, however, is that responders are
enriched for B-cell markers in the nivo arm (Fig. 2b), which
prompted some of us to deeply study the involvement of B cells and
tertiary lymphoid structures in immunotherapy responses of mel-
anoma and renal cell carcinoma51. Further, ipi-nivo nonresponders
are enriched for Beta-Catenin (Fig. 2c), which is consistent with
recent mouse model reports52. Accordingly, indirect53 and direct54

inhibitors of WNT/beta-catenin signaling are being developed to
synergize with checkpoint blockade. Finally, in the analyses of the
ipi-nivo arm (Fig. 3b, f), we observed that CD8 is positively cor-
related with CD45RO and RECIST response. This is consistent with
the observation that higher levels of CD45RO+CD8+ T cells in
circulation is associated with better survival in patients with mela-
noma treated with ipi55.

We identified at least three difficulties associated with this
study. First, the GBM cohort was treated with neoadjuvant
pembro in the off-label setting. Patients with surgically accessible
recurrent GBM and who might benefit from this therapy were
included in this study. These patients had varying prior treatment
and disease histories (Supplementary Table 1), which could
introduce inter-patient heterogeneity in the tumors. Second, the
number of specimens analyzed here was relatively small (n= 8
mNR and 6 mR), which can limit the generalizability of the
findings. Third, melanoma and GBM are different in terms of
pathophysiology, basal resident immune composition, and route
of anti-PD1 entry into the tumor. We attempted to address
these challenges with the development of micro-tumor and
immune neighbor analyses (Fig. 1b, c), which were able to gen-
erate testable hypotheses in both melanoma and GBM, several of
which corroborated with literature observations. Future work can
take advantage of recent advances in spatial profiling techniques,
which are moving towards whole transcriptome analysis and
single-cell resolution56,57. Such techniques should enable
increased levels of quantitation, including cell-type specificity for
various protein markers. Nevertheless, the current study was able
to identify potential co-targets for enhancing the efficacy of
neoadjuvant ICB treatment in recurrent GBM, and permitted
comparisons of ICB-treated melanomas and GBMs, which are
widely seen as the opposite ends of the spectrum with respect to
immunotherapy response.

Methods
Patient specimens. Encouraged by the survival benefits of neoadjuvant pem-
brolizumab treatment in patients with recurrent GBM10, 13 patients with recurrent
GBM, who did not respond to standard of care therapies, were treated with off-
label, off-trial pembrolizumab 200 mg by intravenous infusion 14 ± 5 days before
surgical resection. Patients had surgically accessible recurrent GBM, any recur-
rence, with unequivocal evidence of tumor progression. Patient characteristics
included 44% female, mean age of 54.4 years (range 30.2–68.5 years), mean number
of recurrences 2.5 (range 1–8), and mean Karnofsky performance status of 84
(range 70–90). Tumor collection and analysis were approved by the Institutional
Review Board of the University of California, Los Angeles; all patients provided
written informed consent.

In total 18 GBM specimens were collected from the 13 patients. Two patients
had successive recurrences and were pre-treated with pembro before each surgical
resection. One patient had a multifocal tumor, and specimens were collected from
the original tumor location and at a secondary site (Supplementary Table 1). All
GBM specimens were analyzed by direct multiplexed mRNA analysis to determine
their molecular response, of which 14 specimens were analyzed by spatial protein
profiling due to sample availability. The GBM specimens were included in this
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study as they became available from consecutive patients treated in the off-label
setting, without prescreening for a molecular response. In total 39 melanoma
specimens were analyzed from 23 patients (Supplementary Table 2), who were
enrolled in phase II clinical trial of neoadjuvant ICB (NCT02519322)9. All
melanoma specimens were analyzed by spatial protein profiling.

Direct multiplexed mRNA analysis. RNA was isolated from flash-frozen tumor
tissue procured from the UCLA Brain Tumor Translational Resource using Tissue
Disruption Tubes (Qiagen) and Quick-RNA Mini-prep Plus Kit (Zymo). The
nCounter GX analysis system (NanoString) was utilized according to the manu-
facturer’s directions to quantify RNA expression of 770 genes on the nCounter
PanCancer IO360 Panel (NanoString; list of genes available from the manu-
facturer). NanoString experiments were performed at the UCLA IMT Core/Center
for Systems Biomedicine, which is supported by CURE/P30 DK041301. Additional
probe information for the 23-gene signature is in Supplementary Data 2.

Digital spatial profiling. Pre-commercial versions of the GeoMx Digital Spatial
Profiler (DSP) (NanoString) were used to quantitate proteins in selected microscopic
regions of interest (ROI) in the tumor, as per the methods described in Merritt et al.16.
Briefly, a multiplexed cocktail of antibodies labeled with either ultraviolet (UV)-
cleavable oligonucleotide barcodes or fluorophores was applied to 5 µm-thick
formalin-fixed paraformaldehyde-embedded (FFPE) tumor slices. Including control,
31 or 40 oligonucleotide-labeled antibodies were used in the analysis of melanoma or
GBM, respectively, with 29 protein targets overlapping between both tumor analyses.
The current commercial equivalent of these reagents is the GeoMx Solid Tumor Morp
Kit HsP (cat# 121300301) and GeoMx Imm Cell Pro_Hs (cat# 121300101). The
targets of the oligonucleotide-labeled antibodies are found in Supplementary Table 3.
The spatial protein analysis uses protein targets that have been curated by the vendor
for immuno-oncology (I-O) content. These include broad markers of immune cell
types (e.g., CD68, CD8, CD4), drug targets being developed within the I-O space (e.g.,
B7-H3, IDO-1, VISTA), as well as markers for finer immune cell typing (e.g., CD163,
CD34, CD45RO). Fluorophore-labeled antibodies against CD45 (melanoma and
GBM), S100 (melanoma), GFAP (GBM), along with nuclei stain (SYTO13) were used
as morphological markers. After the stained slices were digitally scanned, the mor-
phological markers guided the creation of ROIs for protein profiling. In melanoma,
custom ROIs were created for each tumor slice by applying an ImageJ script on
thresholded CD45 fluorescent micrographs, facilitating the profiling of CD45+
regions of the tumor. In GBM, geometric ROIs were created across the tissue to
profile representative areas of high and low CD45+ cell proportions. The ROIs were
then selectively illuminated with UV light to cleave the oligonucleotide barcodes,
which were collected by a microcapillary fluidics system and enumerated on the
nCounter system. There are several sources of controls built into the methodology of
the spatial protein analysis. First, the barcoded antibodies used in this analysis have
undergone rigorous testing to ensure specificity, sensitivity, and overall performance,
which are in line with guidelines from the Society for Immunotherapy of Cancer36.
This includes testing in multi-organ tissue microarrays, FFPE cell pellet arrays of
positive and negative control cells, and antibody interaction screening to ensure
antibodies in the panel do not cross react. Further details and sample data from this
process can be found on the vendor website. Second, the antibody panel includes
isotype-negative control antibodies that are also conjugated oligo barcode via UV-
cleavable linker. Third, a 5-level External RNA Control Consortium (ERCC) spike-in
control is included during barcode processing so that batch variations can be cor-
rected during data analysis.

DSP data processing. Digital counts from barcodes corresponding to proteins
were processed in three steps using Microsoft Excel (Redmond, WA). First, raw
counts were normalized with ERCC spike-in controls to account for batch and
system variation. Second, the normalized counts were subtracted with the appro-
priate IgG isotype control counts from each ROI to control for nonspecific anti-
bodies; resulting counts that fall below zero were set to zero. Third, the resulting
counts were normalized by the ultraviolet-light mask area to yield count density.
For inter- and intra-tissue protein expression comparisons, an average count
density was first calculated within each tissue compartment (i.e., immune-rich or
immune-poor). For example, to calculate Ki67 mean count density shown in
Fig. 4a, a Ki67 count density is first calculated for each ROI, which can be cate-
gorized as immune poor or immune rich based on the fraction of CD45+cells
(Supplementary Fig. 1). Figure 4a compares the immune poor regions of the tumor
by averaging the Ki67 count density of the immune-poor ROIs, which yields a Ki67
mean count density for each patient. The mask area division accounts for the
varying number of cells that can be captured in different-sized ROIs, and the
immune-poor categorization of ROIs ensures that a majority of the Ki67 counts
come from non-immune cells.

PLS analysis. As described above, PLS analysis is designed to extract linear rela-
tionships between a matrix X of independent variables and a matrix Y of depen-
dent variables through the sequential formation of PLS components. PLS
components are linear combinations of the original variables formed in a way that
maximizes the covariation of X with Y. After the first component is formed, it is
subtracted from the original dataset, and the residual that remains is used to form

the next component until the optimal number of components is achieved. In this
work, PLS models were constructed in JMP 13.2.1 (SAS, Cary, NC) using the
Nonlinear Iterative Partial Least Squares (NIPALS) algorithm, which uses a single
dependent variable in Y. Before applying the dataset for PLS analyses, the count
density was natural logarithm (x+ 1)-transformed, and inputs to the X matrix
were standardized (mean-centered and unit variance-scaled). PLS regression
(PLSR) analyses used a continuous variable in Y, while PLS discriminant analyses
(PLS-DA) used a categorical variable in Y (i.e., RECIST or molecular response= 1,
RECIST or molecular nonresponse= 0). In PLSR analyses samples are excluded if
the dependent variable is zero (i.e., signal is indistinguishable from background). A
leave-one-out method of cross validation was used to determine the optimal
number of components in the model. Here, an individual data element is removed,
and the remaining data are fitted with a model, which is used to predict the element
that was withheld. This process is repeated until each data element has been
withheld once and only once. Summing up the squares of predicted residuals
results in the predicted residual sum of squares (PRESS). PRESS is used to calculate
the model predictability Q2, defined as the fraction of the total variation in the Y
matrix that can be predicted. We also calculate the metrics R2X and R2Y, which
describe how much of the variation in the X and Y matrix is explained by the
model. Every addition of a PLS component contributes to these metrics (R2X, R2Y,
PRESS, and Q2), and the priority is to minimize PRESS and maximize Q2. In
general, a new component is included if Q2 is increased or removed if Q2 is
decreased. A van der Voet T2 statistic test is also used to evaluate whether a model
significantly differs from the model with the minimum PRESS. The cumulative
R2X, R2Y, and Q2 (all have a maximum of 1) are reported in the respective
predicted vs actual plots. The regression coefficients and the variable importance of
projection (VIP) from the PLS models describe the direction and relative impor-
tance of each input, respectively. Typically, VIP values greater than one indicate
that a variable is important for predicting the output.

Machine learning-based image analysis. Image analysis, including cell seg-
mentation and the extraction of single-cell fluorescent intensity (SYTO13 and
CD45), size and shape, was performed using a custom pipeline developed in
CellProfiler (v 3.1.8)24,25. Immune cells were identified by applying classifiers that
were generated and trained with object intensity, size, and shape measurements
using CellProfiler-Analyst (v 2.2.1). Immune neighbor number, defined as the
number of adjacent immune cells surrounding a given immune cell, was enum-
erated for each immune cell using CellProfiler. Tissue fluorescent micrographs that
were out of focus due to tissue delamination or had other imaging defects were
excluded from this analysis.

Statistics. For mRNA quantification data, expression values were normalized using
positive and negative controls and housekeeping genes and analyzed using the nSolver
analysis software 4.0 (NanoString). For spatial protein quantitation, oligo barcode
counts cleaved from the antibodies were normalized to ERCC spike-in controls,
background subtracted by IgG isotype control, and normalized to the area of assayed
tissue. Mann–Whitney U-test (with 95% confidence interval) was used to compare the
protein expression, the mean immune neighbor number, or model prediction output
between RECIST or molecular responders and nonresponders, between tumor types,
or between regions of interest types. Statistical analysis was performed on Graphpad
Prism 7 and JMP 13.2.1 32-bit with all p values being two-sided.

Data availability
Spatial protein profiling and immune neighbor datasets for GBM and Melanoma are
found in Supplementary Data 1. Source data are available as a Source Data file. High
resolution fluorescent micrographs of the tumor specimens are available upon request
from the authors due to size limitations. The remaining data are available within the
Article, Supplementary Information or Source Data file. Source data are provided with
this paper.
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