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Abstract 
Many gut microorganisms critical to human health rely on nutrients produced by each other for survival; 

however, these cross-feeding interactions are still challenging to quantify and remain poorly 

characterized. Here we introduce a Metabolite Exchange Score (MES) to quantify those interactions. 

Using metagenome-wide metabolic models from over 1600 individuals, the MES allowed us to identify 

and rank metabolic interactions that were significantly affected by a loss of cross-feeding partners in 

10 out of 11 diseases. When applied to a Crohn’s disease case-control study, our approach identified a 

lack of species with the ability to consume hydrogen sulphide as the main distinguishing microbiome 

feature of disease. We propose that our conceptual framework will help prioritize in-depth analyses, 

experiments and clinical targets, and that targeting the restoration of microbial cross-feeding 

interactions is a promising mechanism-informed strategy to reconstruct a healthy gut ecosystem.  
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Introduction 
The human gut contains hundreds of microbial species forming a complex and interdependent 

metabolic network. Over half of the metabolites consumed by gut microbes are by-products of microbial 

metabolism1 with the waste of one species serving as nutrients for others2–4. Species interdependence 

can render microorganisms vulnerable to local extinction if a partner is lost5 unless alternative species 

are available to fill that niche. In this context, having functionally redundant species with the ability to 

produce or consume the same nutrients is beneficial for the host. While it is generally accepted that 

high functional redundancy is a characteristic of resilient human gut microbiomes6–8, the human health 

impacts of redundancy in metabolic interactions remain largely uncharacterized. Restoring the diversity 

of cross-feeding microbial partners represents a logical but still largely unexplored rubric to fight a wide 

range of diseases linked with an unbalanced gut microbiome. 

Mechanistic models that simulate microbial metabolism in silico hold the promise to fill our 

knowledge gap on microbial metabolic interactions4,9. Genome-scale metabolic models (GEMs) are 

based on increasingly comprehensive databases linking genes to biochemical and physiological 

processes10,11. These models have been used to estimate metabolic exchanges between pairs of bacterial 

species for over a decade12,13. Developments in automating the reconstruction of GEMs14, manually 

curating GEMs for thousands of gut microorganisms15,16, and in the availability of tools to model 

interactions between multiple species17 have paved the way to build metabolic models for complex 

microbial communities. Studies using community-wide metabolic models have found dozens to 

hundreds of significantly different metabolic exchanges in the gut microbiome associated with type 2 

diabetes18 and in inflammatory bowel disease19 when compared to healthy controls. A method to rank 

these metabolic interactions according to an ecology-based framework provides the opportunity to 

generate targeted hypotheses underlying mechanistic links between the gut microbiome and diseases. 

Here, we introduce a metabolite exchange score derived from metagenome-wide metabolic 

models, designed to identify the potential microbial cross-feeding interactions most affected in disease. 

We apply our conceptual framework to an integrated dataset of 1,661 publicly available stool 

metagenomes, encompassing 15 countries and 11 disease phenotypes. Our framework identified both 

known and novel microbiome-disease associations, including a link between colorectal cancer and the 

microbial metabolism of ethanol, a connection between rheumatoid arthritis with microbially-derived 

ribosyl nicotinamide, and links between Crohn's disease and specific bacteria that metabolise hydrogen 

sulphide. The scoring system helps quantify and identify context-dependent disruptions of microbial 

interactions, which may present as targets of microbiome-based medicines. 

 

Results 
Potential cross-feeding interactions quantification 
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To understand the link between cross-feeding interactions and disease we designed the 

Metabolite Exchange Score (MES). MES is the product of the diversity of taxa predicted to consume 

and taxa predicted to produce a given metabolite, normalized by the total number of involved taxa (Fig. 

1a and methods). The potential production, consumption and exchange of metabolites by each 

microbiome member is estimated through community-wide metabolic modelling. As with a centrality 

measure of a network that defines their most connected nodes, metabolites with high MESs are likely 

to be key components in the microbial food chain. At the other extreme, metabolites where the MES is 

zero are not produced or not consumed by any member of the community. By comparing MESs for 

each metabolite across healthy and diseased microbiomes, one can rank and identify the metabolites 

most affected by the loss of cross-feeding partners (Fig. 1b). Once metabolites have been prioritized 

with MESs, it is then possible to integrate taxa abundances and their estimated metabolic fluxes to 

retrieve a consortium of species that act as the main producers or consumers of the targeted metabolites. 

We propose this approach as a hypothesis generation strategy to guide new discoveries, targeted 

experiments and clinical trials. 

 

 

 

 

 

 

 

 

Figure 1. Overview of the Metabolite Exchange Score (MES) calculation and application. a The 
Metabolite Exchange Score is the harmonic mean between the number of potential producers (P) and 
consumers (C) inferred from metagenome-wide metabolic models. b Comparative analysis of MES 
between healthy and diseased cohorts can help identify the species and metabolites required to restore 
cross-feeding interactions, which may be promising targets of microbiome therapies. 
 

 

Meta-analysis of 1,661 microbiomes reveals key metabolic interactions among gut 

microorganisms in health and disease 

To obtain an overview of the association between cross-feeding interactions and different 

diseases, we performed a large-scale analysis of 1661 high-quality and deeply sequenced gut 

metagenome samples, including 871 healthy and 790 diseased individuals from 33 published studies, 

15 countries and 11 disease phenotypes (Fig. 2a, Supplementary table S1). Integrating studies and 

countries enabled the assembly of Metagenome-Assembled Genomes (MAGs) for a diverse range of 

gut microbes and allowed characterization of the baseline MESs in the healthy population. Our healthy 

cohort was composed of both males and females with a Body Mass Index (BMI) between 18.5 and 24.9 
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and no reported disease. Samples for which this information was unclear (e.g. disease controls where 

health status or BMI was not reported) are not included in our dataset (see Methods for details). Within-

sample sequence assembly20, metagenome co-binning21 and quality control22 resulted in 24,369 high-

quality MAGs with >90% completeness and <0.05% contamination. We selected one representative 

MAG per species, defined at 95% Average Nucleotide Identity (ANI), resulting in 949 bacterial and 6 

archaeal species, encompassing all dominant microbial phyla found in the gut (Fig. 2b, Supplementary 

table S2). Presence and abundance of these species was determined by mapping sequence reads against 

the 955 MAGs. Forty bacterial and one archaeal species were exclusively found in diseased individuals 

(Supplementary table S3a), while healthy individuals harboured 59 bacterial and one archaeal species 

that were not observed in any diseased individual (Supplementary table S3b). To infer metabolic 

exchanges between microbes, we reconstructed Genome-Scale Models (GEMs)14 for the 955 MAGs, 

built community-scale metabolic models for each individual based on the species-level abundances 

using MICOM17, and calculated MESs using custom scripts23. 

 We first sought to identify the metabolic exchanges with the highest diversity of cross-feeding 

partners in healthy microbiomes by analysing the MESs of the entire healthy group (Fig. 2b). 

Metabolites showed a wide variation in MES scores between individuals (Supplementary Fig. S1). 

Metabolites with the highest mean MES included nucleobases such as uracil (MESs mean and sd = 60.5 

± 17.6) and thymine (41.8 ± 21.8), essential nutrients such as phosphate (59.9 ± 17.0) and iron (40.3 ± 

36.9), and sugars such as glucose (52.6 ± 22.1) and galactose (52.3 ± 21.3). 

To identify the metabolites most affected by the loss of cross-feeding partners during disease, 

we compared MESs between the healthy group and the eleven disease phenotypes. This analysis 

identified significant loss of cross-feeding partners for specific metabolites in all disease groups except 

for Schizophrenia (Fig. 2c, Supplementary Figure S2). Metabolites with high MES in healthy 

individuals and known to be important for human health, such as vitamin B1 (thiamin)24 and precursors 

of short-chain fatty acids (e.g. malate, glucose, galactose)25, were significantly affected in multiple 

disease phenotypes (Kruskal-Wallis’ p < 0.05 / number of tests to correct for multiple comparisons). 

Thiamin was the metabolite with highest difference in MESs scores between healthy and diseased 

microbiomes in cirrhosis and ankylosing spondylitis, ranking second in Inflammatory Bowel Disease 

(IBD) (Fig. 2c). Associations between deficiency of thiamine with cirrhosis and IBD have been 

previously reported26–28, but to our knowledge, this is the first indication of a possible microbial-

mediation of this phenotype. Likewise, this is the first indication of a link between microbially-derived 

ribosyl nicotinamide and rheumatoid arthritis (Fig. 2c). The results also confirmed previously reported 

microbially-mediated disease-metabolite associations, such as ethanol in colorectal cancer29 and 

hydrogen sulphide in IBD30,31, reinforcing the potential of our novel approach to identify reasonable 

relationships a priori. 
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Figure 2. Global analysis reveals most common metabolic exchanges among healthy gut microbes 
and disease-specific loss of cross-feeding partners. a Map highlighting the 15 countries from which 
metagenomes were included in our analysis. b Network of metabolic exchanges within the microbiomes 
of 871 healthy individuals, highlighting the phyla of the retrieved MAGs and the top 15 metabolites 
with highest metabolite exchange scores (MES), which are expected to be central to sustain a healthy 
microbial community structure. c Metabolites with significantly reduced MESs in diseased 
microbiomes when compared to the healthy group (Kruskal-Wallis’ p < 0.05/number of comparisons), 
suggesting significant loss of microbial cross-feeding partners for those metabolites. The panel of 
metabolites shown here include the top 5 metabolites with highest MES difference between healthy and 
diseased groups for each disease. No significant difference in MES was found in patients with 
schizophrenia after accounting for multiple comparisons. Ank=ankylosing spondylitis, 
IBD=inflammatory bowel disease, NAFLD=non-alcoholic fatty liver disease, ME/CSF=myalgic 
encephalomyelitis/chronic fatigue syndrome, T2D=type 2 diabetes, Arthero=atherosclerosis, CRC= 
colorectal cancer, Arthritis=rheumatoid arthritis. 
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Species diversity has distinct relationships with producers and consumers of exchanged 

metabolites 

Diversity of microbial species within the gut community is commonly considered a marker of 

health status. The number of microbial species exchanging metabolites naturally correlates with the 

number of species in the community. To further understand the relationship between diversity and 

metabolite exchange, we tested the null hypothesis that producers and consumers are equally affected 

by species diversity. Specifically, we correlated the number of producer or consumer species of each 

metabolite with species diversity to determine statistical differences between the slopes of these 

correlations for metabolite production and consumption. The null hypothesis (no statistical difference 

between slopes) implies that the number of producer species and consumer species increases at the same 

rate as species diversity increases. Such results would imply that cross-feeding interactions dependent 

only on the number of species present in the community. This null hypothesis was rejected for 79% of 

metabolites exchanged by the gut microbiome (Fig. 3a, Supplementary table S4), with the slope of the 

correlation being significantly steeper either for consumers (55% of metabolites) or producers (24% of 

metabolites). From the metabolites with highest MESs, only producers and consumers of glycerol 

showed no significant difference in response to species diversity (Fig 3 b–p). 

 

Figure 3. The effects of species diversity on the number of producers and consumers of exchanged 
metabolic products varies for different metabolites. a Differences between the slopes of the species 
diversity vs producers or consumers correlations were observed for the majority of metabolites, with 
producers having a steeper slope in 24% of the metabolites, and consumers having a steeper slope in 
55% of the metabolites analysed. b-p Representation of the correlation between species diversity vs 
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producers or consumers for the top 15 metabolites with highest MESs in healthy microbiomes. Analyses 
included all exchanged metabolites present in at least 50 microbiomes (healthy and diseased cohorts). 
Asterisks indicate a significant p value of the regression model after Bonferroni correction. 
 

Microbial food web restoration as a potential therapeutic strategy for Crohn's disease 

To investigate how the application of Metabolite Exchange Scores and our modelling 

framework may guide the identification of promising therapeutic targets, we focused on Crohn’s disease 

(CD), a form of IBD. We selected a single case-control study32 with the largest number of samples from 

healthy and diseased within our quality-controlled dataset to minimize batch effects. In accordance with 

the global analyses, we found that hydrogen sulphide (H2S) – a gas previously implicated in CD and 

IBD symptoms30,31,33– was the metabolite most affected by the loss of cross-feeding microbial partners 

(twofold reduction, Supplementary table S5). While H2S production by the gut microbiome has been 

subject of several studies (e.g.34,35), the consumption if this gas is less characterized, and our modelling 

results indicate that H2S consumed by bacteria can be incorporated into sulphur-containing amino acids 

such as cysteine (Supplementary Figure S3). 

 Focusing on H2S, we found that the microbiome of healthy individuals contained more species 

with the potential to produce H2S, as well as more species with the potential to consume H2S, than the 

microbiomes associated with CD (Fig. 4a). Interestingly, the diversity of potential H2S consumers was 

more affected in CD patients (56% less diverse on average, supplementary table S6) than the diversity 

of H2S producers (32% less diverse), resulting in a significantly higher H2S producer to consumer ratio 

in individuals affected by CD (Fig. 4c). We observed similar results when investigating the flux of H2S 

among microorganisms. The total estimated ability of the microbiome to consume H2S in the disease 

state was reduced by 74%, while the total production was not significantly affected, resulting in a higher 

H2S production to consumption ratio in CD (Fig. 4b and 4d, Supplementary table S6). The excess of 

H2S (i.e. H2S predicted to be exported to medium) was not significantly different between healthy and 

diseased subjects (Kruskal-Wallis p = 0.8). The indication that H2S consumers are more affected than 

H2S producers in CD stands after correcting for the confounding effects of species diversity, although 

no significant difference was observed for the flux of H2S exchanged among microorganisms 

(Supplementary table S7). 

To better understand the genetic basis of the metabolic modelling results, we investigated the 

distribution of 46 genes known to be involved in H2S cycling35 in the MAGs present in the CD case-

control study (Supplementary table S8). We found between one and 23 genes in each MAG 

(Supplementary table S8). Five genes involved in H2S cycling were significantly more prevalent in 

microbiomes associated with healthy individuals (Supplementary table S9): cysK, dcm, Fuso_cyst, 

metH and metK (p < 0.0012 accounting for multiple comparisons and using species diversity as a 

confounder variable). Another five genes were more prevalent in CD-associated microbiomes: asrA, 

asrB, asrC, dmsA and dsrC (p < 0.0012), the first four genes also being significantly enriched when 

accounting for species abundance (Supplementary table S9). 
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Figure 4. Shift in hydrogen sulphide production-consumption equilibrium associated with 
Crohn’s disease. a The number of species with potential to produce or consume H2S is significantly 
reduced (Kruskal-Wallis p-values < 0.05) in microbiomes associated with CD when compared to 
healthy controls. b The total estimated consumption of H2S is depleted in CD, while production was 
not significantly affected (fluxes estimated in millimoles per hour per gram of dry weight). c-d A 
significant increase in the ratio of number of producers to consumers (c) and in the total estimated H2S 
production to consumption (d) was found in microbiomes associated with CD. e Species involved in 
the exchange of H2S that are most altered in CD, which might be promising targets of microbiome 
therapy. The network shows the H2S producers with increased production (brown), and the consumers 
with reduced H2S consumption (blue) in CD when compared to healthy controls. The 10 species most 
affected in each category are highlighted. The thickness of the nodes and edges are proportional to the 
species’ weighted flux sum of H2S within the consumer or producer categories. 
  

To identify the key species associated with H2S imbalance in CD, we compared the contribution 

of each species to the total H2S production or consumption in the healthy and CD cohorts. For each 

species, H2S flux (weighted by relative abundances) was estimated and the difference of total H2S 

weighted flux in healthy and CD individuals calculated. The species showing the highest increase 

towards H2S production in CD patients included members of the classes Clostridia, Bacteroidia and 

Bacilli (Fig. 4e, Supplementary table S10). Enterocloster clostridioformis (Clostridia) and 

Enterococcus_B faecium (Bacilli) were only observed in the CD cohort. Many species (45% of the 

MAGs from the case-control study) showed an ability to both produce and consume H2S according to 
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the models, and their role was dependent on their community context. Phocaeicola dorei (Bacteroidia) 

was the species showing the highest difference in predicted H2S production between healthy and CD 

individuals despite being common in both cohorts. We found multiple genes related to H2S metabolism 

in this species (cysK, bsh, dcm, Fuso cyst, luxS, metK, sufS, and two copies of the malY and metH 

genes). Members of the Clostridia class were the H2S consumers showing the highest reduction in H2S 

consumption in CD microbiomes, including Roseburia intestinalis, Blautia_A obeum, and two 

Faecalibacterium species (F. prausnitzii_J and F. sp900758465) (Fig. 4e, Supplementary table S10). 

The top 5 consumer species had between two and four copies of the cysteine desulfurase (IscS) gene, 

in addition to a range of other genes involved in H2S metabolism (Supplementary tables S8 and S10).  

 

Discussion 
In this work we introduce a new MES based conceptual framework and apply it to an integrated 

dataset of metabolic models for 955 gut species from 1,661 publicly available stool metagenomes, 

encompassing 15 countries and 11 disease phenotypes. This approach revealed a significant depletion 

of potential cross-feeding interactions in the microbiomes associated with 10 diseases and identified 

promising therapeutic targets in a case-control Crohn's disease study. 

We show that our analytical framework identifies both known and novel microbiome-disease 

associations, providing a cost-efficient and mechanistically grounded strategy to prioritize experiments 

and guide clinical trials. One example is the link between rheumatoid arthritis and ribosyl nicotinamide 

(also known as nicotinamide riboside, or NR). This metabolite is one of the main precursors of 

nicotinamide adenine dinucleotide (NAD+), which has been reported to be significantly reduced in 

individuals with rheumatoid arthritis36. Administration of NR and other NAD+ precursors leads to 

improved clinical outcomes for rheumatoid arthritis patients36 and for a range of other inflammatory, 

neurodegenerative and cardiovascular diseases37. To our knowledge, this is the first reported evidence 

for a role of microbial NR metabolism in rheumatoid arthritis. We also identified ethanol as the 

metabolite most affected by loss of cross-feeding in individuals with Colorectal Cancer (CRC). 

Moderate to heavy alcohol consumption is associated with a 1.17 – 1.44 higher risk of developing 

CRC38 via a process that is at least partially mediated by the microbiome, as gut bacteria metabolise 

ethanol to produce the carcinogenic acetaldehyde39. The capacity to identify these and other coherent 

metabolite-disease links using exclusively metagenome data is further evidence for the validity and 

utility of our approach. 

Assessing microbiome-disease associations from a functional perspective has been shown to 

reveal patterns that would not be perceptible in a taxonomy-centric analysis40. This phenomenon is 

supported by our analyses that demonstrates the number of consumers of microbially-derived 

metabolites tend to respond more quickly to species diversity than the number of producers. It is 
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possible that low species diversity limits the availability of metabolites that can be consumed in the 

next trophic level, driving microbial consumers to local extinction. 

    Using CD as a case study, we demonstrated how the metagenome-wide modelling framework 

can help define mechanistically informed hypotheses for targeted experimental and clinical validation. 

Our results suggest that CD patients lack microbial community members to support a healthy H2S 

balance. This gas is expected to have a protective effect in the gut when present in small amounts, but 

it disrupts the mucus layer and may cause inflammation when present in larger quantities41–44. Our 

results corroborate recent findings suggesting that the microbiome of IBD patients is particularly 

deficient in secreting metabolites containing sulphur45, and additionally indicate that H2S consumer 

species are disproportionately lost in CD. Microbial exchanges of H2S may affect the host directly 

through mechanisms such as modulating luminal pH31, or indirectly through cascade effects on 

microbiome composition. 

The accuracy of the metagenome-wide modelling framework applied here is limited by the use 

of automated genome-scale metabolic reconstructions, which represent phenotypes close to manually-

curated models14 but are naturally unable to predict all organism-specific traits, especially if those rely 

on genes and pathways that are yet to be characterized. Automated genome-scale models provide an 

opportunity for a top-down approach, where large scale analyses like the one performed here can guide 

a range of more refined hypothesis-driven studies, ideally coupled with experimental validation. 

Additional refinement can be obtained in future studies handling smaller datasets by manual model 

curation and integration of other omics datae.g. 46, and by integrating personalized data on host diet and 

metabolism47. 

We expect that metagenome-wide metabolic models, coupled with an assessment of microbial 

cross-feeding interactions, will help alleviate one of the main barriers in the development of microbiome 

therapies – prioritizing which species or metabolites to target. By focusing on restoring key aspects of 

the gut ecology, we may be able to introduce more effective and long-lasting changes in the human gut 

microbiome. 

 

Methods 
Global survey of gut metagenomes and quality control 

We performed a literature search for peer-reviewed studies with publicly available human stool 

metagenomes and associated metadata. These included large-scale meta-analyses of gut metagenomes 

and metadata compilations48,49. Studies focusing on dietary interventions, medications, exercise and 

children (<10 years old) were excluded. For longitudinal studies, only one sample per individual was 

included in the analyses. To minimize the impact of sequencing technologies, only studies reporting 

paired-end sequencing using Illumina’s HiSeq or NovaSeq platforms were included. 
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The healthy cohort included individuals reported as not having any evident disease or adverse 

symptoms49. Samples classified as disease controls and where the health status could not be determined 

were excluded. To avoid ambiguous health/disease status, samples from individuals with colorectal 

adenoma (non-cancerous tumour) and impaired glucose tolerance (pre-diabetes) were excluded, and 

only individuals with a Body Mass Index (BMI) between 18.5 and 24.9 were included in the healthy 

cohort. Samples with less than 15M PE reads after quality control were excluded to minimize the impact 

of sequencing depth. A maximum of 100 samples per disease category from each study were used to 

minimize batch effects and reduce the dataset to a computationally feasible size.  

Raw sequence reads were downloaded from NCBI and subject to quality control with 

TrimGalore v.0.6.6 (Krueger F.  http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) 

using a minimum length threshold of 80bp and a minimum Phred score of 25. Potential contamination 

with human sequence reads was removed by mapping the metagenome sequences to the human genome 

with bowtie v.2.3.550. To minimize the impact of sequence depth, samples were rarefied to 15M 

fragments (30M PE reads) with seqtk v.1.3 (https://github.com/lh3/seqtk). The quality-controlled 

dataset contained 1697 samples, which are provided along with their metadata and SRA BioSample 

identifiers in Supplementary table S1. 

 

Metagenome assembly and binning 

Assembly was performed for individual metagenomes with Megahit v.1.2.920. Metagenome co-

binning was performed with Vamb v.3.0.221, dividing the 1697 samples into two batches due to the high 

computational requirements of using co-abundance information. Completeness and contamination 

levels of metagenome bins were assessed with CheckM22. We retrieved 24,369 bins with > 90% 

completeness and <0.05% contamination. These bins were dereplicated at 95%ANI using drep v.3.0.051, 

which selects the ‘best’ representative genome based on multiple quality metrics (completeness, 

contamination, strain heterogeneity, N50, centrality). De-replication resulted in 955 high-quality, 

species-level (95% ANI) metagenome-assembled genomes. These MAGs were taxonomically 

classified with GTDBtk v.1.5.152 and their species abundances across samples were calculated by 

mapping sequence reads to MAGs with KMA v.1.3.1353. 

 

Genome and metagenome-scale metabolic modelling 

Genome-scale metabolic models  (GEMs) were reconstructed for each species-level MAG with 

CarveMe v1.514. GEMs were produced using domain-specific templates for archaea and bacteria, an 

average European diet54 as medium for gap filling, and the IBM Cplex solver. 

Metabolic exchanges between community members of a microbiome were calculated with 

MICOM v.0.2617. MICOM simulates growth and metabolic exchanges among members of the 

microbiome while accounting for their differential abundances, and it has been shown to estimate 

realistic growth rates. Furthermore, MICOM is computationally tractable when it comes to simulating 
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diverse microbial communities (i.e., dozens-to-hundreds of species). Metabolic exchanges were 

estimated with MICOM’s growth workflow, using a 0.5 trade-off parameter, an average European diet 

as medium, and parsimonious Flux Balance Analysis (pFBA) to identify optimal growth rates. The 

underlying CarveMe models contain relatively few carbon sources, leading to low growth rates and 

consequent numerical instability. Therefore, the fluxes of medium items were multiplied by 600 to 

feasibly calculate metabolic exchanges, and then corrected in the final results. An optimal solution was 

not found for 36 samples, which were removed from the analysis, resulting in a final dataset of 1661 

samples. A snakemake workflow is provided in the Zenodo repository for reproducibility23. 

 

Metabolite Exchange Scores 

The underlying rationale to define the Metabolite Exchange Score (MES) is that an individual 

where metabolites are produced and consumed by multiple members of the microbiome will have a 

higher functional redundancy than an individual where these metabolites are produced and consumed 

by fewer species, which is a characteristic of most healthy ecosystems. For homogenized stool-derived 

metagenomes, which do not capture the patchiness in microbial aggregates found in the gut, high 

functional redundancy increases the likelihood that most micro-niches are populated by at least one 

species. The MES weighs the number of microbial species consuming and producing a given 

metabolite, in a given microbiome sample. MES was defined for each metabolite as the harmonic mean 

between potential consumers and producers: 

 

𝑀𝐸𝑆 = 2 ×	
𝑃	 × 𝐶
𝑃 + 𝐶

 

 

Where P is the number of potential producers and C is the number of potential consumers of a 

given metabolite. Note that MES will be zero if a metabolite is only produced or only consumed but 

not exchanged among microorganisms. 

The specific metabolites for which cross-feeding partners were significantly lost were identified 

with a Kruskal-Wallis test comparing diseased phenotypes against the healthy population. The 

Bonferroni method was used to account for multiple tests (0.05 as target alpha, divided by the number 

of tests), and only metabolites present in at least 50 individuals, including at least 15 diseased subjects, 

were included in the analyses. Water and oxygen were excluded from the analyses. For a simplified 

graphical representation (Fig 2c), metabolites were selected for display if they showed a significant 

reduction in the number of cross-feeding partners, and if they were in the top 5 metabolites with highest 

difference in MES in any disease. Barplots were generated with the ggplot2 R package55. An additional 

word cloud including up to 100 metabolites with significant MES differences between healthy and 

diseased was generated with the wordcloud R package56. 
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Species diversity effects 

We used the total number of species as a measure of species diversity. Differences in species 

diversity between healthy and diseased microbiomes were assessed using the Wilcoxon test. 

 Differences in the slopes between species diversity and consumer or producer correlations were 

assessed by fitting a linear model in R, considering the interaction between number of producers and 

consumers with their category (producer or consumer): 

 

lm(number_prod_or_cons ~ species_diversity*category_prod_cons) 

 

 The statistical significance for the difference between slopes was corrected for multiple 

comparisons using the Bonferroni method. 

 

Nutritional interactions in the microbiome associated with Crohn’s disease 

 We selected a case-control study for an in-depth analysis that demonstrates how our framework 

can be applied to identify promising therapeutic targets. Given that the completeness of metagenome-

assembled genomes is optimized by co-binning large datasets21, we opted to select a case-control study 

from our quality-controlled dataset to take advantage of the large number of high-quality MAGs used 

to model community-wide metabolism. A total of 84 samples from the study of He and colleagues32 – 

the largest CD study within our dataset – passed our quality control and were included in our analyses, 

including 46 patients with Crohn’s disease and 38 healthy controls. The specific metabolites for which 

cross-feeding partners were lost were identified with a Kruskal-Wallis test, using only metabolites 

observed in over half of the samples and adjusting for multiple tests with a Bonferroni correction. 

The flux of H2S, estimated in millimoles per hour per gram of dry weight, was multiplied by 

species abundances to obtain the total H2S production and consumption exchanged among 

microorganisms. Fluxes were log2-transformed for the statistical tests and graphical representation. 

Differences between the diversity of H2S producers and consumers, ratios of producers to consumers, 

and their fluxes was evaluated with Kruskal-Wallis tests. The H2S predicted to be exported to medium 

was used to estimate the excess H2S production by the microbiome. 

We used a nested linear model to account for the confounding effects of species diversity on 

the associations between number or flux of producers/consumers and disease status. Samples containing 

less than 99 species (the minimum number of species in the healthy cohort) were excluded from this 

analysis (n=58 samples remaining), ensuring a linear relationship between species diversity and number 

of H2S consumers or producers. 

 To better understand the genetic basis of H2S production and consumption in MAGs observed 

within the CD case-control study, we performed a Hidden Markov Model (HMM) survey of 74 genes 

involved in H2S cycling35 with HMMer v.3.3.257, using trusted cutoff scores to ensure homology. We 

used a linear model to test if these genes were differentially distributed between healthy and CD 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 17, 2023. ; https://doi.org/10.1101/2023.02.17.528570doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.17.528570
http://creativecommons.org/licenses/by-nc/4.0/


 

 14 

individuals, using only samples with at least 100 species and genes observed in at least 10 samples. 

Analyses were performed considering both MAGs abundance (by multiplying gene counts by spp. 

abundance) and prevalence (using species presence/absence, which would be more informative when 

relatively rare taxa are responsible for a large proportion of the production and consumption of H2S). 

Data was offset by 0.1 to avoid infinity upon log-transformation, species diversity was used as a 

confounding variable and the Bonferroni correction was used to account for multiple comparisons. 

 In order to identify species that may be promising targets of microbiome therapy in CD, we 

weighted in their flux of H2S and relative abundances within CD and healthy cohorts. Specifically, 

weighted H2S fluxes of each microbial species was estimated by multiplying their H2S fluxes by their 

relative abundances. The weighted sum of H2S fluxes was calculated as the sum of all weighted fluxes 

within healthy or diseased cohorts. Differences in the weighted sum of H2S between healthy and CD 

cohorts pointed to the key H2S producers and consumers associated with Crohn’s disease. The Crohn’s 

disease cohort contained more individuals than the healthy one, therefore eight random samples were 

excluded to ensure the same number of individuals (38) in healthy and diseased categories. The 

metabolic model of Roseburia intestinalis, one key H2S consumer, was visualized with Fluxer58 using 

best k-shortest paths to visualize pathways between H2S intake and cell growth. 
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