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Integration of time-series meta-omics data reveals
how microbial ecosystems respond to disturbance
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The development of reliable, mixed-culture biotechnological processes hinges on under-

standing how microbial ecosystems respond to disturbances. Here we reveal extensive

phenotypic plasticity and niche complementarity in oleaginous microbial populations from a

biological wastewater treatment plant. We perform meta-omics analyses (metagenomics,

metatranscriptomics, metaproteomics and metabolomics) on in situ samples over 14 months

at weekly intervals. Based on 1,364 de novo metagenome-assembled genomes, we uncover

four distinct fundamental niche types. Throughout the time-series, we observe a major,

transient shift in community structure, coinciding with substrate availability changes. Func-

tional omics data reveals extensive variation in gene expression and substrate usage amongst

community members. Ex situ bioreactor experiments confirm that responses occur within

five hours of a pulse disturbance, demonstrating rapid adaptation by specific populations. Our

results show that community resistance and resilience are a function of phenotypic plasticity

and niche complementarity, and set the foundation for future ecological engineering efforts.
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M ixed-culture biotechnological processes are essential for
humankind to achieve its sustainable development
goals1,2. However, in order to engineer reliable pro-

cesses, fundamental insights into microbial niche ecology are
necessary. Biological wastewater treatment plants (BWWTPs)
represent a ubiquitous biotechnological application and occupy a
central position in sustainable resource management plans3,4.
Oleaginous bacterial populations are commonly found as the
main constituents of floating sludge in BWWTPs and include
divergent taxa such as Candidatus Microthrix parvicella or Aci-
netobacter spp.5. Storage lipids, such as triacylglycerols (TAGs),
wax esters (WEs), and polyhydroxyalkanoates (PHA), derived
from the lipid-rich biomass can directly be transesterified to fatty
acid alkyl esters (biodiesel)5, whereby PHA also represents a
suitable precursor for bioplastics6. In general terms, substrate
storage provides microbial populations with a competitive
advantage under rapidly fluctuating and oftentimes sparse sub-
strate conditions7,8. Even though BWWTP operation is a con-
trolled process, factors such as aeration cycles, seasonal changes
in temperature, and composition of inflow wastewater fluctuate.
These factors have a profound impact on population dynamics9

as well as linked process efficiency10. For example, periods of
inefficient operation have been linked to competition between
polyphosphate and glycogen accumulating organisms11. How-
ever, for wastewater-borne lipid-accumulating populations, which
have compelling potential to be used in circular economic
models3, community shifts have been observed12–14 with yet
unclear links to niche ecology in situ.

Integrated meta-omics approaches hold the potential to resolve
the fundamental niches and realized niches of microbial popu-
lations in situ15. The former represents the exhaustive inventory
of resource ranges and conditions sustaining viability in the
absence of environmental stress, competition, or predation, while
the latter represents the part of a fundamental niche that is
actually utilized by a population in the presence of other species
and in a particular environment. The reconstruction of the fun-
damental niches is possible by linking functional potential to
metagenome-assembled genomes (MAGs)16 obtained through
metagenomic (MG) sequencing. Functional omics data, such as
metatranscriptomics (MT) or metaproteomics (MP), allow the
resolution of realized niches16. Meta-omics approaches have
previously been used for comparative functional screening in
different environments and to characterize microbial activity, e.g.,
by using MT/MG ratios17,18. In human gut-borne microbial
communities, niche partitioning has been inferred based on
transcriptional profiles19. Furthermore, the coupling of MT and
MP to meta-metabolomic (MM) data allows the differentiation
between niches of genetically closely related populations20.
Resolving the functions of coexisting microbial populations is of
particular interest in the context of the extensive functional
redundancy within microbial ecosystems21,22. Based on their
emergent properties23, microbial communities are characterized
by composite metabolic capabilities and increased robustness
compared to individual strains24,25. Steering these complex sys-
tems towards a desired endpoint, e.g., increased lipid accumula-
tion, requires in-depth understanding of niche space and stability.

Here, we study whether community resistance and resilience
are a function of phenotypic plasticity and niche com-
plementarity. We develop and apply a novel framework for the
in situ characterization of fundamental and realized niches of
individual populations providing an in-depth understanding of
ecological processes within a microbial community. We delineate
ecological niches by integrating longitudinal meta-omics data
(MG, MT, MP, and MM) and study complementarity of the
realized niches. The addition of functional omics data (MT, MP,
and MM) enables the resolution of metabolic plasticity and we

thereby reveal how microbial ecosystems respond to disturbance.
Using ex situ experiments to simulate pulse disturbances, we
assess the response of individual oleaginous populations to oleic
acid addition under shifting dissolved oxygen concentrations.
Our dataset and methods represent important resources for the
emerging field of integrating meta-omics data to study mixed
microbial communities. Our results contribute to applications
beyond wastewater treatment such as informed ecological engi-
neering or research on host-associated microbiota.

Results
A time-resolved meta-omics dataset. To characterize the niche
space of lipid-accumulating populations as well as resistance and
resilience of the microbial community, we sampled a municipal
BWWTP weekly over a 14-months period (from 2011-03-21 to
2012-05-03). Additionally, two preliminary time-points outside of
the time-series were included13,26. Samples were split into intra-
cellular and extracellular fractions, followed by concomitant
biomolecular extractions27 and high-throughput measurements
(Fig. 1). MG, MT, and MP data were obtained on the intracellular
fractions and MM data was generated on both the intracellular
and extracellular fractions.

After quality filtering, the per-sample averages of MG and MT
reads were 5.3 × 107 (±7.7 × 106 s.d.) and 3.3 × 107 reads (±1.2 ×
107 s.d.), respectively (Supplementary Data 1). We performed
sample-specific genome assemblies (average of 4.1 × 105 contigs
per sample) followed by binning28 yielding a total of 1364 MAGs
passing our quality filtering criteria (see “Methods” section). To
track the abundance, gene expression, and activity of individual
microbial populations over time, we dereplicated29 the MAGs
across samples to generate 220 representative MAGs (rMAGs).
From these, we further selected those with the highest complete-
ness resulting in 78 rMAGs (76.2% mean completeness, 2.2%
mean contamination) (Supplementary Data 2). These genomes
represent the major populations across the time-series, with an
average mapping percentage of 26% ± 3% (s.d.) and 27% ± 3% (s.
d.) of total MG reads and total MT reads per time-point,
respectively, and are corroborated by a previous study based on
16S rRNA amplicon sequencing13. For the MP measurements, we
obtained a per-sample average of 1.5 × 105 ± 8.2 × 103 (s.d.)
MS2 spectra and a total of 7.6 × 106 MS2 spectra. Of 7.8 × 105

identified peptides, 3.3 × 105 (43%) could be matched to 2.1 × 105

predicted coding sequences of the 78 rMAGS. Per time-point, on
average 1.5 × 104 ± 4.5 × 103 (s.d.) spectral matches, i.e., on
average 94% of all rMAG-associated matches could be assigned
to genes with predicted functions, i.e., assigned KEGG ortholog
groups (KOs). To study the community-wide resource space and
metabolite turnover, we measured metabolite levels by an
untargeted approach using gas chromatography (GC) coupled
with mass spectrometry (MS) (Supplementary Data 3). In total,
89% (58 of 65) of the identified metabolites could be linked to
enzymes encoded by the rMAGs. We estimated resource uptake
by calculating intracellular vs. extracellular metabolite ratios for
42 metabolites detected in both fractions (Supplementary Data 3).
Additionally, six abiotic parameters were measured during
sampling, as well as 34 parameters recorded continuously as
part of the BWWTP online monitoring (Supplementary Data 4).

We also generated MG and MT data for the ex situ
experiments. These simulated the fluctuating conditions within
the BWWTP, namely the short-term response to pulse dis-
turbances of oleic acid influx under shifting dissolved oxygen
conditions. We sequenced DNA and RNA fractions obtained at 0,
5, and 8 h after addition of oleic acid, yielding on average 1.02 ×
108 MG and 9.33 × 107 MT reads per sample. The increased
sequencing depth compared to the in situ time-series was
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important to obtain a fine-grained view on short-term responses
to oleic acid. Mapping of the sequencing reads to the selected set
of rMAGs revealed mapping percentages comparable to the
in situ time-series (mean: 21% ± s.d.: 1% for both MG reads and
MT reads).

Overall, our meta-omics dataset comprehensively describes
mixed microbial communities underlying lipid-accumulation
processes in BWWTPs, and in particular their functional
potential, composition, activity, as well as substrate availability
and assimilation.

Distinct niche types. To resolve the fundamental niches of the
pertinent bacterial populations through their functional genomic
potential, we assigned KOs to the rMAGs’ predicted coding
sequences. We hypothesized that individual populations would
form clusters based on the similarity/dissimilarity of their func-
tional potential. We found four distinct clusters of rMAGs by
projecting pairwise Jaccard distances of KO presence (Fig. 2a and
Supplementary Fig. 1). These functional clusters (FunCs) repre-
sent differences of known, overall metabolic capabilities of the
rMAGs and reflect their fundamental niches. FunC-1 consisted of
Actinobacteria, and FunC-2 was primarily comprised of members
of the Bacteroidetes phylum, mainly of the Sphingobacteriia class
(Fig. 2a). FunC-3 contained Betaproteobacteria and Gammapro-
teobacteria whereas FunC-4 appeared more diverse, containing
Spirochaetia as a subcluster, Deltaproteobacteria, and tax-
onomically unclassified rMAGs. We found mash-based genomic
distance30 to be strongly linked to FunC assignment (PRO-
CRUSTES sum of squares: 0.399, correlation 0.775, PROTEST p-
value 0.001, Supplementary Fig. 2a), highlighting that phylogeny
is a strong determinant for FunC assignment. However, some

distantly linked subgroups were defined by their shared func-
tional complement, i.e., assigned to a different FunC than their
neighbors in a corresponding phylogenetic tree (Supplementary
Fig. 2b). This shows that KO profile similarity-based analyses
provide important information in addition to phylogeny-based
approaches31.

A total of 1857 KOs was shared between all FunCs and we
found that FunCs 1, 3, and 4 contained comparable numbers of
nonredundant KOs with 4276, 4177, and 4129 KOs, respectively
(Fig. 2b). FunC-2 exhibited a reduced number of KOs (3550),
however it also represented the least taxonomically diverse FunC
as it almost exclusively consisted of Haliscomenobacter spp. and
Chitinophaga spp. (Supplementary Data 2). We tested for the
molecular functions that were significantly enriched in individual
FunCs and found, among others, functions related to lipid
metabolism for FunC-1, amino sugar, and nucleotide sugar
metabolism for FunC-2, and biofilm and secretion systems for
FunC-3 to be enriched (Fig. 2c and Supplementary Data 5; one-
sided Fisher′s exact test, adjusted p-values < 0.05).

While lipid-accumulating organisms hold great potential for
the recovery of high-value molecules5, interactions between these
organisms as well as the community at large are understudied
in situ. We found that diacylglycerol O-acyltransferase (DGAT/
WS), which is involved in lipid storage32, was encoded in 23 out
of 24 rMAGs of FunC-1, pointing to the importance of TAG
accumulation in this cluster. Most FunC-3 members also encoded
DGAT/WS (14 of 19). Moreover, PHA synthase was enriched in
this cluster (15 of 19). All rMAGs encoded lipases, functions
involved in fatty acid synthesis, or beta-oxidation. However,
several acyl-CoA and acyl-ACP dehydrogenases were over-
represented in FunC-1 and FunC-3. Additionally, acetyl-CoA
acetyltransferases involved in the degradation and biosynthesis of
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fatty acids were prevalent throughout all FunCs. The enrichment
in FunC-1 and FunC-3 for genes involved in lipid accumulation
are consistent with previous metabolic characterizations, with
FunC-1 consisting mainly of Actinobacteria for which TAG
accumulation has been described33. FunC-3 contains Betapro-
teobacteria and Gammaproteobacteria that have been

characterized as TAG, WE, and/or PHA accumulators, e.g.,
Thauera spp., Albidiferax spp., or Acinetobacter spp.33,34.
Importantly, we observed a difference between these FunCs in
the utilization of acetyl-CoA. Specifically, FunC-1 members
showed an enrichment in functions related to the ethylmalonyl-
CoA pathway (crotonyl-CoA reductase and enoyl ACP
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reductase), while FunC-3 members encoded key enzymes
involved in the glyoxylate cycle (malate synthase and isocitrate
lyase).

We further determined specific functional enrichment for the
four FunCs in relation to the breakdown of other macromolecules
(including CAZymes and proteases), nitrogen cycling, stress
response, and motility (Supplementary Data 5). The discriminat-
ing functions point towards interdependencies between the
different FunCs, e.g., in terms of denitrification (Fig. 2c). We
found that the separation into taxonomically consistent groups is
accompanied by specific conserved functions, e.g., strong
enrichment in FunC-1 for WhiB transcriptional regulators
characteristic of the Actinobacteria35. Overall, we observed a
widely distributed set of core functions in foaming sludge
microbiomes and identified groups of populations characterized
by distinct functional potential in lipid metabolism, amino sugar,
and nucleotide sugar metabolism as well as biofilm and secretion
systems.

Community dynamics and stability. To understand whether
population dynamics can be related to substrate availability and
other abiotic factors36, we used MG depth-of-coverage to infer
rMAG population abundance across the time-series. We com-
puted distances between the rMAGs’ abundance profiles (based
on their pairwise correlations) and found that the dynamics of
rMAGs can be partially explained by the FunC assignment
(PERMANOVA R2= 0.12, Pr > F= 0.002; no significant differ-
ence in dispersion; Supplementary Fig. 3), thereby linking FunC
membership to temporal abundance shifts. The most abundant
taxa (Supplementary Data 2) included Candidatus Microthrix
(26.0% relative abundance across the time-series; referred to as
Microthrix in the remaining text), Acinetobacter (8.1%), Halis-
comenobacter (8.0%), Intrasporangium (7.2%), Leptospira (6.3%),
Albidiferax (5.7%), and Dechloromonas (2.4%) (Fig. 3a). Several
of the recovered rMAGs belonged to filamentous taxa according
to the MiDAS field guide database for organisms in activated
sludge37, such as the highly abundant Microthrix, and Halisco-
menobacter, as well as the less abundant Anaerolinea (1.1 %) and
Gordonia (0.2 %).

Variations during the operation of BWWTPs occur largely due
to changes in the influent wastewater composition and climatic
conditions38. We observed gradual changes in the community
structure with the seasons (Fig. 3a). In October 2011 (month
seven of the timeseries), the community composition began to
shift, with a markedly altered composition in late November
2011. This shift was characterized by spikes in the relative
abundance of Leptospira (peak at 2011-11-23) and Acinetobacter
(peak at 2011-11-29) (Fig. 3a), and co-occurred with a
pronounced shift in substrates (Fig. 4 and Supplementary Fig. 4).
The substrates included mainly nonpolar metabolites, including
long-chain fatty acids (LCFAs) and glycerides, as well as polar
metabolites mannose, glucose, disaccharides, ethanolamine, and
putrescine. We found that the intersample distances of MG-based
abundances could partially be explained by a subset of the abiotic

factors (Fig. 3c). Summer samples were characterized by higher
temperatures, phosphate levels and higher intracellular vs.
extracellular oleic acid ratios. Higher extracellular mannose levels
and a slight increase in conductivity marked the beginning of the
autumn shift. During November, intracellular and extracellular
levels for LCFAs increased, indicating a higher availability or
turnover of LCFAs, but not necessarily an equivalent conversion
to neutral storage lipids. In the subsequent winter time-points,
substrate levels normalized and the community transitioned back
to the predisturbance state.

The dominance of Microthrix was re-established within
approximately ten generations, given estimates for in situ growth
rates of 0.12–0.3 growth cycles per day7,8. The stability39 of the
individual rMAGs was heavily affected by the November shift
(mean population stability: 1.43 ± 0.69 s.d.), compared to the
stability when excluding the respective time-points (mean
population stability: 2.39 ± 1.28 s.d.; 2011-11-02 to 2011-11-29;
Supplementary Data 2). The observed population dynamics
indicate that the community composition is resilient, i.e., recovers
after pronounced changes in available substrates, and resistant to
small-scale environment fluctuations over time.

While MG depth was used as a proxy for population
abundance, MT depth enabled the analysis of transcriptional
activity within the community and of individual popula-
tions (Fig. 3b). The comparison of intersample distances based
on mean, relative MT depth showed similar patterns to MG-based
results (Fig. 3c), albeit with a higher degree of variability indicated
by increased inter-sample distances (Fig. 3d). A comparison of
relative MP counts showed a more even distribution between
populations with comparable overall trends (Supplementary
Fig. 5). Samples collected in April 2011 and 2012 appeared to
represent transition states between seasons. Additionally, a set of
late winter and early spring samples in 2011 and 2012 showed
higher similarities at the expression level than at the abundance
level. Interestingly, the high abundance of individual genera, such
as Microthrix or Chitinophaga was not necessarily reflected in
their mean expression levels (Fig. 3b and Supplementary Fig. 5):
populations assigned to Leptospira, Haliscomenobacter, Anaeroli-
nea, and Acinetobacter showed higher mean expression overall.
Spikes in relative MT depth as for Acinetobacter rMAGs (Fig. 3b;
2011-04-14, 2011-05-08, and 2012-04-25) point towards increased
activity around these time-points, which however did not lead to
major shifts in community structure. Notably, higher expression
levels of Acinetobacter were succeeded by increased expression
levels of Haliscomenobacter (2011-04-14 to 2011-05-20) or
Anaerolinea (2011-05-08 to 2011-09-19). On average, MT-based
stability values were less affected by the community shift than
MG-based stability values (Supplementary Table 2). We also
observed adaptation of metabolic pathway activity to environ-
mental conditions (Fig. 5). Pentose to EMP pathway intermediates
exhibited the highest correlation between MT and MP abun-
dances, followed by Hydrogen metabolism and Fatty acid
oxidation. Several pathways exhibited a characteristic drop during
the November shift, e.g., hydrogen metabolism, hydrocarbon

Fig. 2 Fundamental niche types. a Multidimensional scaling (MDS) of Jaccard distances for the functional repertoire (presence of KEGG ortholog groups
[KOs]) for each rMAG. Ellipses containing 95% (inner) or 99% (outer) of cluster-assigned data points are shown resulting in four distinct functional
clusters (FunCs). Colors indicate the class-level taxonomy of the rMAGs. b Numbers of shared and unique KO assignments between the FunCs. Colored
bars show the total number of nonredundant KO assignments within the individual FunCs. Overlaps between different sets of FunCs and their unique KOs
are represented by the central black bars with the points below defining the members of the respective sets. c Presence of key functions within the four
FunCs. Bars next to metabolic conversions show the proportion of rMAGs encoding characteristic enzymes for the respective reaction or pathway adjusted
for mean rMAG completeness. Pathways ubiquitously present across rMAGs are shown in gray color. Source data are provided as a Source Data file. red.
reductase, GLN syn. glutamine synthetase, GLU dhg. glutmatate dehydrogenase, glyox. cyc. glyoxylate cycle, ethylm.-CoA ethylmalonyl-CoA pathway,
PHA depolym. PHA depolymerase.
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degradation, and TCA cycle, while fatty acid oxidation showed a
marked peak. This highlights the transition from dominance by
generalist, lipid-accumulating populations towards a lipolytic
community.

With each of the four FunCs comprising multiple organisms
encoding similar KOs and, hence, metabolic capabilities, we

studied how individual populations adapt to their environment.
To this end, we linked changes in community structure and in the
expression levels of individual populations to the influence of
environmental parameters. While rMAG abundance patterns
could be linked to FunC assignment (Supplementary Fig. 3), we
could not identify an analogous categorization when correlating
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rMAG abundances to abiotic factors. Instead, correlation patterns
indicating similar preferences to environmental conditions
emerged for subgroups of rMAGs across different FunCs
(Supplementary Fig. 7). This shows that populations with a
similar fundamental niche type responded differently to the
environmental conditions pointing towards functional plasticity
and, thus, adaptations of their realized niches

Niche characteristics of in situ and ex situ time-series. While we
identified four fundamental niche types, it may be assumed that
cohabiting species cannot occupy the same realized niches,
leading to realized niche segregation within and between types.
We hypothesized that different degrees of niche overlap, leading
to variable levels of competition, must exist40,41. To better

understand the complementarity of realized niches, we used the
functional omics data to study how rMAGs overlapped in relation
to their encoded genes and how rMAGs varied in their expression
profiles. While the former represents competition between
populations with overlapping profiles, the latter is an important
factor for the adaptability and overall survival strategy of indi-
vidual populations. We distinguished between expressed KOs and
nonexpressed KOs based on MT/MG ratios as well as MP data
and computed distances between the resulting time-point-specific
expression profiles. While the separation based on the functional
potential was preserved in a clustering of expression profiles (in
particular for FunC-2), the expression profiles of FunCs-1,
FunCs-3, and FunCs-4 overlapped to a greater extent than those
of FunC-2 (Fig. 6a). Two Anaerolinea populations assigned to

Fig. 3 Community structure and function dynamics. a, b Relative abundance and expression levels of recovered populations represented by rMAGs over
time based on MG depth (a) and MT depth (b) of coverage, respectively, representing mapping percentages of MG [26% ± 3% (s.d.)] and MT [27% ± 3%
(s.d.)]. The relative abundance of individual rMAGs is grouped based on genus-level taxonomic assignment with rMAGs of unresolved taxonomy grouped
in “Other”. Recovered genera with mean abundance below 2% are summarized as a single group (light gray). c, d Ordination of Bray–Curtis dissimilarity of
relative abundances, MG (c) and MT (d), of individual rMAGs constrained by selected abiotic factors (metabolite levels, metabolite-ratios, and physico-
chemical parameters shown as black arrows with arrow lengths indicating environmental scores as predictors for each factor). Points are colored by month
of sampling and point-shape reflects the year of sampling. Thin black lines connecting the points visualize the time course of sampling. Source data are
provided as a Source Data file.
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FunC-1 appeared to express similar functions compared to the
rMAGs of FunC-3 and FunC-4 and were found in a subgroup of
rMAGs that showed a higher overall activity in terms of MT/MG
ratios also when clustering expression profiles per time-point
(Supplementary Fig. 8). Overall, the clusters based on KO
expression status per time-point did not exhibit a separation
according to the grouping into FunCs (Supplementary Fig. 8).
This indicates a propensity of the respective rMAGs to more
frequently express shared KOs than discriminatory KOs and,
consequently, increased the competition for specific substrates.

To investigate the importance of individual, discriminatory
functions, we selected rMAG clusters, based on gene expression
and MP counts, to which the two most abundant rMAGs
(D51_G1.1.2, A01_O1.2.4) had been assigned. We observed that
clusters into which rMAG D51_G1.1.2 (Microthrix) was con-
sistently categorized showed expression of few KOs with the
majority being ribosomal proteins, TCA cycle-related enzymes
such as pyruvate, malate, and glyceraldehyde 3-phosphate
dehydrogenases, chaperones, and most frequently the WhiB
family transcriptional regulator (19 time-points; Supplementary
Data 6).

Clusters containing rMAG A01_O1.2.4 (Acinetobacter) fre-
quently exhibited expression of genes related to motility and
chemotaxis as well as stress response, but also functions related to
phosphate accumulation, such as K08311 and K00937 (Supple-
mentary Data 6). KOs related to lipid metabolism were also

frequently expressed in these clusters e.g. acylglycerol lipase (in 35
time-points) or diacylglycerol O-acyltransferase (25 time-points).
This indicates that high expression of key functionalities is an
integral part of the strategies of the populations within these
clusters even though they differed with respect to their encoded
functions.

We next studied how the observed distinction between
populations with high activity is linked to phenotypic plasticity.
As alternating oxygen levels in BWWTPs play an important role
in selecting for lipid accumulating populations7,42, we added oleic
acid, the preferred carbon source for Microthrix43, in lab-scale
experiments under different oxygen fluctuation conditions8 (see
“Methods” section; Fig. 1). These ex situ conditions involved
aerobic, anoxic, aerobically preconditioned biomass followed by
hourly anoxic alternations, and anoxically preconditioned
followed by hourly aerobic alternations. The MT/MG ratios for
FunC-1 and FunC-3 were higher ex situ when compared to the
in situ samples, and vice versa for FunC-2 and FunC-4 rMAGs
(Fig. 6b). Furthermore, especially for FunC-3, average MT/MG
ratios were highest in the aerobic conditions and lowest in the
anaerobic conditions. This is in line with FunC-3 being
comprised mainly of Betaproteobacteria and Gammaproteobac-
teria, which include mostly aerobic genera44. A more fine-grained
view on differences in specific activity was obtained, when
grouping rMAGs based on taxonomic assignment (Fig. 6c). While
rMAGs of the classes Acidimicrobia and Actinobacteria (FunC-1)
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showed the lowest mean MT/MG ratios across the in situ
time-series (0.5), the ratio was twice as high in the ex situ
experiments across all conditions which can be attributed to the
oleic acid pulse. Betaproteobacteria (FunC-3) behaved similarly,
while Gammaproteobacteria (FunC-3) showed a tendency
towards higher activity with increased oxygen levels. We observed

high activity for rMAGs assigned to Anaerolineae and Spir-
ochaetia in the in situ time-series. Interestingly, this was not the
case for Spirochaetia in the ex situ experiments, which points
towards the necessity for additional substrates. The Anaerolineae
rMAGs, with taxonomically related species being mainly
anaerobic45, showed the lowest MT/MG ratio under the
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alternating conditions, while Deltaproteobacteria rMAGs showed
high MT/MG ratios. Overall, the differentiated responses under
alternating conditions point to distinct short-term and long-term
adaptation strategies.

To study how fast the adaptations in response to the influx of
oleic acid occur, we compared the baseline (0 h time-points,
before oleic acid addition) against the 5 and 8 h time-points (after
oleic acid addition). At 5 h, lipases, involved in TAG hydrolysis,
for which high expression in the in situ samples was observed,
were downregulated in the ex situ response to the addition of
oleic acid (Supplementary Fig. 9a). An increased number of genes
related to beta-oxidation were upregulated at 5 h, particularly in
rMAGs assigned to FunC-3 (Supplementary Fig. 9b). Similar
effects were observed when comparing the 0 h and 8 h time-
points (Supplementary Fig. 10a, b). This suggests that responses
in gene expression happen within the 5 h timeframe but on
distinct time scales for different populations. In-depth analyses of
the populations exhibiting the highest expression levels for TAG
lipases, DGAT/WS, and PHB synthases (Supplementary Note 1
and Supplementary Figs. 11–14) underline the previously
determined role of Microthrix as a key lipid accumulator in
BWWTPs13,46. The results also indicate that populations such as
Anaerolinea, Leptospira and Acinetobacter overlap with Micro-
thrix in terms of their capacity to assimilate LCFAs and available
neutral lipids. Niche complementarity and plasticity, i.e., over-
lapping fundamental and realized niches, as well as gene
expression variability, impart population-independent processing
of lipids in situ. From an ecosystem perspective, this community-
wide trait confers functional resistance and resilience.

Discussion
The ability to reconstruct population-level genomes and infer
their functional potential from metagenomes allows identification
of the fundamental niches of distinct community members.
Unprecedented views of realized niches are achieved by tracking
functional gene expression via MT and MP analyses, as well as
actual resource usage resolved via comparative metabolomics
analyses of intracellular and extracellular metabolites. The joint
resolution of fundamental and realized niche breadths of indivi-
dual populations is key to understanding the ecological processes
within microbial communities, including, but not limited to, how
such consortia respond to disturbance.

Here, through the application of our novel framework for the
integration of multi-meta-omics datasets, we were able to track
community-wide and population-resolved traits longitudinally
in situ as well as ex situ. We found four distinct fundamental
niche types in this ecosystem. Populations assigned to a specific
type shared common functional repertoires and largely shared a
similar phylogenetic background, in line with previously observed
metabolic repertoires47,48. Simultaneously, some functions, e.g.,
related to lipid accumulation, were found to be enriched in
multiple niche types.

Despite our results showing a link between functional com-
plement, realized niches, and phylogeny, we also observed distinct
activities in response to the changing environmental conditions

within individual niche types, e.g., some lowly abundant popu-
lations exhibited high activity. This suggests distinct adaptation
strategies to variabilities in the resource space and is exemplified
by the populations in the functional cluster that includes the
dominant Microthrix population. Microthrix follows a strategy
based on phenotypic heterogeneity for rapid adaptation to the
prevailing environmental conditions13. Our ex situ validation
experiments revealed the adaptations to changes in substrate
availability and dissolved oxygen concentrations after as little as
5 h post-disturbance. This plasticity in gene expression allows the
populations to be resistant to fluctuations in environmental
conditions. Furthermore, this strategy was found to be unique to
Microthrix as evidenced from the increased transcriptional
response of other lipid-accumulating and/or lypolytic popula-
tions, e.g., Acinetobacter, Leptospira, or Anaerolinea spp., espe-
cially in the aerobic ex situ conditions.

Our work highlights the requirement to account for organism-
specific adaptation strategies and time-frames within mixed
communities. We observed that drastically altered community
composition and gene expression patterns followed a severe
disturbance in substrate levels within our time-series. We hypo-
thesize that this community shift was a consequence of excess
substrate availability, and it highlights a limit to the communityʼs
resistance. Individual populations recovered within ten sludge age
cycles post-disturbance, which indicates that the resilience of the
community is also linked to phenotypic plasticity. The overlap in
realized niches reflects niche complementarity. This in turn is
governed by interspecific competition over a set of substrates,
such as oleic acid. Other independent work on the human gut
microbiome has highlighted the importance of interspecific
competition for the maintenance of stability under a constant
feeding regimen49. How interspecific competition or lack thereof
relates to resilience represents a key question for future work.

Overall, our framework demonstrates that multi-meta-omics
data allows an in-depth characterization of ecological niches over
time. Due to the observed plasticity in activity and the recovery
after a major, transient perturbation, we confirm that the rela-
tionship between resistance and resilience is a function of fine-
scale competition over resources in this environment. The
resulting complementarity in both the fundamental and realized
niches guarantees the provision of stable ecosystem services50

and, thus, the long-term stable operation of mixed-culture bio-
technological processes. These results are particularly relevant for
the future engineering of niches within mixed-culture bio-
technological processes3, which are key to achieve humankind’s
sustainability goals1,2. In more general terms, it will be important
to understand if phenotypic heterogeneity and niche com-
plementarity play similarly important roles in the stability of
other microbiomes.

Methods
Sampling and biomolecular extractions. Oleaginous biomass comprised of
floating sludge islets was sampled from the surface of an anoxic tank at the
Schifflange municipal biological wastewater treatment plant (BWWTP; Schifflange,
Luxembourg; 49°30′48.29″N; 6°1′4.53″E)27. In situ sampling intervals of approxi-
mately one week were chosen to match the sludge age (the average time the

Fig. 6 Realized niches. a MDS of time-point specific expression profiles based on MT/MG ratios or evidence at the MP level. Colors indicate FunC
assignment of the individual rMAGs. Point shape represents cluster assignment based on automated clustering of the embedded points. Ellipses containing
95% of cluster-assigned data points are shown. Points size represents the average MT/MG depth ratios of the individual rMAGs. The amounts of variance
explained by the first two dimensions are shown on the respective axes. b Mean MT/MG depth ratios over all time-points are shown per condition for 78
rMAGs (boxplots show: center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; Each group of boxplots corresponds to
a group of rMAGs (FunC-1 n= 24, FunC-2 n= 23, FunC-3 n= 19, FunC-4 n= 12), each boxplot represents an independent experiment.). c Mean MT/MG
depth ratios grouped according to class-level taxonomic assignment of the rMAGs with the number of rMAGs for each group are shown in the top of the
plot (n). Source data are provided as a Source Data file.
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biomass remains in the entire system) as well as the average doubling time of the
dominant Microthrix population7,13.

Samples were collected with a levy cane, stored in 50 mL sterile Falcon tubes
and flash-frozen on site. Biomolecules were extracted in randomized batches after
the end of the sampling period. A total of 53 samples was extracted. The set
included two preliminary samples (2010-10-04 and 2011-01-25) and 51 samples
from a higher frequency sampling phase (2011-03-21 to 2012-05-03).

Polar and nonpolar metabolites, DNA, RNA, and proteins were extracted in a
sequential co-isolation procedure13,51. Around 200 mg of frozen samples were
weighed out. Extracellular metabolites were extracted from the supernatant with
cold chloroform and methanol–water, and separated into polar and nonpolar
fractions. Intracellular metabolites were isolated in the same way after a lysis step
by cryomilling, followed by sequential spin column-based (Qiagen Allprep)
purification of RNA, DNA, and proteins.

Abiotic factor measurements and data processing. At the time of sample col-
lection, the following physico-chemical parameters were measured inside the tank
with a portable field kit (Hach) on-site: pH, conductivity, oxygen-levels, and
temperature.

Additionally, online monitoring measurements were recorded by the BWWTP
operators including nitrate, phosphate, ammonium, dry-matter and dissolved
oxygen levels at the outflow as well as conductivity and pH at the inlet, and pH and
temperature inside the sampled tank (referred to as operational measurements). Six
missing values in the on-site measurements for pH were imputed from the
available measurements with the R-package imputeTS using the method stine52.

Metaproteomic analyses. Protein samples were separated by 1D SDS-PAGE
(Criterion precast 1D gel, Bio-Rad), stained and cut into 2 mm bands. Peptides
were subjected to liquid chromatography (LC) after in-gel reduction, alkylation and
tryptic digestion. An Easy-nLC column (Proxeon, Thermo Fisher Scientific) was
used. The peptide mixture was separated with a binary solvent gradient for elution
with 0.1% formic acid in water and 0.1% formic acid in acetonitrile. Mass spec-
trometry was performed with an LTQ-Orbitrap Elite (ThermoFisher Scientific)
on an 11-scan cycle consisting of a single precursor scan at a mass range of
300−2000m/z followed by ten data-dependent MS/MS scan events. MS/MS scans
were carried out with an isolate width of 2m/z and a normalized collision energy of
35. Additional details of the metaproteome preparations and measurements are
described in a previous study13.

We converted raw mass spectrometry files to MGF format using MSconvert53

using default parameters. The Graph2Pro pipeline54 was used to process the
resulting files together with the corresponding MG and MT co-assembly graphs
from MEGAHIT55. The Graph2Pro pipeline uses FragGeneScan56 to predict
proteins from the long edges in the assembly graphs (i.e., from the contigs). In
addition, it predicts tryptic peptides that span multiple edges in the graphs. Search
databases were constructed using the putative proteins and tryptic peptides,
respectively. These were used for initial peptide identification with the MS/GF+
search engine57. Identified tryptic peptides were then combined and used as the
constraints for Graph2Pro to predict protein sequences from the co-assembly
graphs. The generated sample-specific databases produced by Graph2Pro were
used for the final metaproteomic searches using MS/GF+ (second search) to
produce the final identification results. MS–GF+ was used for the final peptide
identification with custom parameters: the instrument type was set to high-
resolution linear trap quadropole (LTQ) with a precursor mass tolerance of 15 ppm
and an isotope error range of −1 and 2 and the minimum and the maximum
precursor charges were set to 1 and 7, respectively. We estimated the false discovery
rate (FDR) with a target-decoy search approach using reverse sequences of the
protein entries while preserving the C-terminal residues (KR). An FDR threshold
of 1% was used. Identified peptides from the Graph2Pro pipeline were assigned to
coding sequences (CDS) of rMAGs from prokka-based58 predictions (see below) by
using the command line interface version of peptidematch59. Spectral counts for
sample-specific peptide sequences were assigned to matching CDS.

Meta-metabolomic analyses. Four distinct measurements for the metabolite
extracts were performed: i) nonpolar extracellular, ii) polar extracellular, iii)
nonpolar intracellular, and iv) polar intracellular. Metabolite extracts were deri-
vatized using a multipurpose sampler (GERSTEL). Dried polar samples were dis-
solved in 15 μL pyridine, containing 20 mg/mL methoxyamine hydrochloride
(Sigma-Aldrich), and incubated under shaking for 60 min at 40 °C. After adding 15
µL of N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA; Macherey-Nagel),
samples were incubated for additional 30 min at 40 °C under continuous shaking.
Dried nonpolar samples were dissolved in 30 μL MSTFA and incubated under
shaking for 60 min at 40 °C. For quality control, pool samples, i.e., a combination of
all extracts of the same measurement27, were introduced in the measurement
sequence after every fifth measurement.

GC-MS analysis was performed using an Agilent 7890A GC coupled to an
Agilent 5975C inert XL Mass Selective Detector (Agilent Technologies). A sample
volume of 1 µL was injected into a split/splitless inlet, operating in splitless mode
(intracellular and extracellular polar fraction) and split mode (10:1, intracellular
non-polar fraction) at 270 °C. The gas chromatograph was equipped with a 30 m (I.

D. 250 μm, film 0.25 μm) DB-5MS capillary column (Agilent J & W GC Column).
Helium was used as carrier gas with a constant flow rate of 1.2 mL/min.

The GC oven temperature was held at 80 °C for 1 min and increased to 320 °C
at 15 °C/min. Then, the temperature was held for 8 min. The total run time was 25
min. The transfer line temperature was at a constant 280 °C. The mass selective
detector (MSD) was operating under electron ionization at 70 eV. The MS source
was held at 230 °C and the quadrupole at 150 °C. Full scan mass spectra were
acquired from m/z 70 to 700.

All GC–MS chromatograms were processed using the MetaboliteDetector
software60 (v. 2.5). The software package supports automatic deconvolution of all
mass spectra. The following deconvolution settings were applied: peak threshold: 6,
minimum peak height: 6, bins per scan: 10, deconvolution width: 2 scans, no
baseline adjustment, Minimum 15 peaks per spectrum, No minimum required base
peak intensity. Compounds were automatically annotated by retention time and
mass spectrum using an in-house mass spectral library. Detected metabolite
derivatives (_xMeOX_xTMS/_xTMS) were used for further statistical data analysis.

Metabolites detected in blanks at a mean intensity level of more than 75% of the
mean level in samples were removed as contaminants. Metabolites that were not
detected in all pool samples were also removed from subsequent analysis as well as
metabolites not detected in at least 25% (90% for correlation analyses) of samples.
Metabolite intensities were normalized with respect to pool samples to account for
instrument drift as described previously51 by dividing the intensity values by the
mean of up to two preceding and subsequent pool samples according to the
measurement sequence. Metabolite derivate names of identified metabolites were
manually assigned to KEGG compound identifiers and CHEBI IDs.

Metagenomic and metatranscriptomic analyses. MG libraries were prepared as
paired-end libraries with the AMPure XP/Size Select Buffer Protocol following a
size selection step13. RNA libraries were prepared after washing stored extracts
with ethanol and depletion of rRNAs with the Ribo-Zero Meta-Bacteria rRNA
Removal Kit (Epicenter). The ScriptSeq v2 RNA-Seq Library Preparation Kit
(Epicenter) was used for cDNA library preparation. Libraries were sequenced on an
Illumina Genome Analyser (GA) IIx instrument with a read-length of 100 bps
paired-end. Downstream processing and assembly of MT and MG reads was
carried out with IMP28 version 1.3 with the following parameters: i) Illumina
Truseq2 adapters were trimmed, ii) the filtering step for reads of human origin was
omitted, and iii) the MEGAHIT v.1.0.6 de novo assembler55 was selected for
coassembly of the MG and MT data. Co-assembled contigs from each timepoint
were binned based on nucleotide signatures, presence of single-copy essential genes
and metagenomic depth of coverage61. MAGs from each timepoint with at least
28% completeness and with a contamination of less than 20% based on essential
marker gene content62 were retained for downstream selection of representative
population-level genomes (rMAGs). To this end, MAGs were dereplicated with
dRep29 using the following parameters: i) completeness threshold of 0.6, ii) strain
heterogeneity threshold of 101, iii) primary cluster identity of 0.6, and iv) sec-
ondary cluster nucleotide identity of 0.965, and other parameters at default settings.
In a following step, a subset of rMAGs with the highest completeness rates was
selected based on CheckM63 completeness estimates, requiring at least 0.50 in the
difference of completeness and contamination estimates. Furthermore, rMAGs
without taxonomic assignment on kingdom level were removed as they could
represent misassembled contigs, resulting in a set of 78 coherently taxonomically
annotated rMAGs that were used for the time-series analysis. For downstream
analyses, MG and MT reads from all time-points were mapped using bwa mem64

per time-point using the rMAGs as references. MG and MT depth-of-coverage per
time-point were computed on the gene and contig level by dividing the summed
depth per base by the length of the respective sequence.

Assembled contigs from IMP were annotated with Prokka v1.1158 including
prediction of full-length coding sequences (CDS) with prodigal v2.6065. Predicted
CDS were also searched with an in-house Hidden Markov Model (HMM)
database61 of KEGG ortholog groups (KO) using HMMer v.1.12b66. We inferred
compounds linked to CDS through CDS-to-reactions links from predicted enzymes
with their respective KO annotation and EC assignment. Links to FOAM ontology
categories67 were assigned to each CDS by matching KO annotations. To assign
MIMAG classifications68 for all MAGs, assembly statistics, e.g., N50, were
computed with the R-package seqinr v3.6-169. tRNAs were predicted with Aragorn
v1.2.3870 and MAGs were screened for rRNA genes with barrnap 0.971.

Taxonomic assignment of rMAGs was performed using AMPHORA272 in
combination with sourmash-lca v. 2.0.0a173, kmer-length:21 and threshold:4 and
an existing database including approximately 87,000 microbial genomes
(downloaded on 2017-11-09 from https://osf.io/s3jx8/download). If no taxonomic
assignment was possible by whole genome-comparison (sourmash-lca), predictions
for unassigned levels were augmented with consensus predictions using
AMPHORA2: Assignments based on individual marker genes were combined by
summation of the associated assignment probabilities. The consensus assignment
with the highest overall score was determined. If the consensus assignment scores
constituted for less than one third of the total probability scores the assignment was
discarded as “low confidence assignment”.

Ex situ experiments. The ex situ experiments were performed in bioreactors
seeded with sludge samples and diluted 1:5 (v/v) with artificial wastewater with a
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final volume of 2 l8. The mixed sludge was split into two aliquots subjected to
aerobic or anoxic preconditioning for 2 h. For the anoxic preparations a gaseous
dioxygen-free environment (<1000 ppm) was achieved and monitored within a
glove box (Jacomex, Dagneux, France). Thirty milliliters of the sludge mixtures
were transferred into 50 mL serum vials connected to a multifold valve system to
generate alternating aerobic (compressed air) or anaerobic (nitrogen gas) condi-
tions. Samples were subjected to aerobic, anoxic, or alternating conditions (in 1 h
intervals) after 2 h of preconditioning. After the preconditioning (time-point 0 h),
oleic acid was supplemented at 500 μM alongside nitrate (80 μM) and phosphate
(16 μM). Additional samples for concomitant DNA and RNA extraction and
sequencing were taken at 5 and 8 h. This resulted in 12 samples for the four
conditions tested (aerobic, anoxic, aerobically preconditioned followed by alter-
nating, and anoxically preconditioned followed by alternating).

Isolated DNA for the 12 samples was sequenced on an Illumina Hiseq 2500
with a read-length of 250 bps paired-end. Isolated RNA was reverse transcribed to
cDNA and sequenced with a read-length of 100 bp paired-end. Resulting MT and
MG reads were pre-processed with IMP28 and mapped to the rMAGs
reconstructed from the long-term time-series as described above. Raw read counts
per CDS were determined with featureCounts74 and compared with DESeq275

across all conditions.

Statistical analyses. Statistical analyses were performed using R 3.4.4 and R
3.6.176 with prevalent use of the tidyverse R-package77.

Determination of niche types. Annotated KOs for the individual rMAGs were
summarized in a binary presence/absence matrix, in which 0 s indicated absence
and 1 s indicated presence of at least one gene annotated with the respective KO.
Subsequently, pairwise binary Jaccard-distances between the rMAGs based on
these KO profiles were calculated and projected into two-dimensional space by
multidimensional scaling (MDS). To determine the clustering of rMAGs in the
resulting embedding, the appropriate number of clusters was determined by uti-
lizing the k-means function for a range of centroids (ranging from 1 to 9 centroids)
and determining the total within-sum-of-squares error as a measure of variability
of resulting clusters. Functional clusters (FunCs) were then determined by k-means
clustering. Enrichment of individual KOs within the assigned FunCs was deter-
mined with Fisher′s exact test based on the number of rMAGs with the assigned
KO. Resulting p-values were adjusted by FDR correction (function p.adjust
method= ”fdr”) and KOs with a p-value below 0.05 were considered as enriched
within a FunC. To test the relationship of rMAGs abundance and FunC assign-
ment, pairwise Pearson correlation (cor.test in R) was computed between the
relative abundance values of the rMAGs across time. Resulting correlation coeffi-
cients (ρ) were transformed to distances with the following formula: 1� ρþ1

2 .
Dispersion of these distances was assessed with the betadisper function of the vegan
package78. Association of the FunC assignment to the distances was tested using
the adonis function.

Whole genome-based pairwise distances between all rMAGs were calculated
with mash v.2.2.230 (-k 21 –s 10,000) and embedded in two dimensions using
MDS. PROCUSTES from the vegan package78 was used to map the whole genome-
based embedding onto the KO profile-based embedding. PROTEST from the vegan
package was used with 9999 permutations.

Linking abiotic factors to population abundances. Measurements of abiotic
factors (metabolites and physico-chemical parameters), as well as ratios of intra-
cellular and extracellular metabolite intensity ratios were transformed to z-scores.
Relative abundances of rMAGs were associated to abiotic factor levels by testing for
correlation (cor.test function, method= “spearman”). Additionally, abiotic factor
levels were placed onto a 2D ordination of MG or MT-based abundance profiles
(Bray–Curtis dissimilarity) applying the vegan function scores.

Correlation of gene levels. To assess the expression of pathways over time, MT
depth and MP spectral counts for genes of rMAGs were summed for each L1
FOAM category67. Grouped values were divided by the total MT depth or MP
counts of all rMAGs per time-point to obtain the relative contribution of genes
assigned to a specific category. The relative values were scaled to values between 0
and 1. Correlations between the scaled MT and MP time-series for each functional
category were calculated with the cor function in R.

Clustering of expression profiles. To characterize expression profiles of the
distinct rMAGs over time, gene functions (KOs) were summarized as active or
inactive depending on MT/MG ratios or evidence at the MP level. KOs were
considered active if at least one gene with the KO matched the following criteria:
either the MT/MG depth ratio of the gene was greater than 1 or at least 2 peptide
spectral counts could be assigned to the gene. If the MG depth of a gene was below
one, the MT depth was considered instead of the MT/MG ratio to avoid inflating
active KOs for lowly abundant populations. Binary Jaccard distances of the
resulting KO profiles were determined for each rMAG separately for each time-
point. Clusters were determined in each of the resulting 51 ordinations with the
hdbscan function of the dbscan package with a minimum of five members per

cluster. The resulting clusters were used to assess which functions were expressed
over time by different subsets of rMAGs with a focus on rMAGs assigned to the
same clusters as Microthrix D51_G1.1.2 or Acinetobacter A01_O1.2.4.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Meta-omics data from five individual time-points has previously been published13,26,51.
The MG and MT FASTQ files and the sample-wise MT-assembly and co-assembly
contigs are available on NCBI BioProject PRJNA230567. MP data has been deposited in
the PRIDE database under the accession number PXD013655. Raw metabolomics data is
available at MetaboLights under the accession MTBLS2021, while processed intensities
after identification are provided with this manuscript (Supplementary Data 3). Similarly,
physico-chemical parameters are provided with this manuscript (Supplementary Data 4).
Processed and intermediary data files from the combined multi-omic analyses, e.g.,
annotated and normalized MT, MG read counts, are available at Zenodo (https://doi.org/
10.5281/zenodo.3961685). External databases were used in this study: KEGG (https://
www.genome.jp/kegg/), CHEBI (https://www.ebi.ac.uk/chebi/).

Code availability
Code used for genome reconstruction and dereplication is available at the LCSB R3
GitLab (https://git-r3lab.uni.lu/shaman.narayanasamy/LAO-time-series). Code used for
the processing and analyses of the meta-omics data, as well as for additional analyses and
generation of plots for main and supplemental figures is also available at the LCSB R3
GitLab (https://git-r3lab.uni.lu/malte.herold/laots_niche_ecology_analysis).
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