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Abstract 

Dataset acquisition and curation are often the hardest and most time-consuming 

parts of a machine learning endeavor. This is especially true for proteomics-

based LC-IM-MS datasets, due to the high-throughput data structure with high 

levels of noise and complexity between raw and machine learning-ready 

formats. While predictive proteomics is a field on the rise, when predicting 

peptide behavior in LC-IM-MS setups, each lab often uses unique and complex 

data processing pipelines in order to maximize performance, at the cost of 

accessibility and reproducibility. For this reason we introduce ProteomicsML, 

an online resource for proteomics-based datasets and tutorials across most of the 

currently explored physicochemical peptide properties. This community-driven 

resource makes it simple to access data in easy-to-process formats, and contains 

easy-to-follow tutorials that allow new users to interact with even the most 

advanced algorithms in the field. ProteomicsML provides datasets that are useful 

for comparing state-of-the-art (SOTA) machine learning algorithms, as well as 

providing introductory material for teachers and newcomers to the field alike. 

The platform is freely available on https://www.proteomicsml.org/ and we 

welcome the entire proteomics community to contribute to the project at 

https://github.com/proteomicsml/. 
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Introduction 

Computational predictions of analyte behavior in the context of mass 

spectrometry (MS) data have been explored for nearly five decades, with early 

rudimentary predictions dating back to 1983.1 With the rise of technology and 

computational power, machine learning (ML) approaches were introduced into 

the field of proteomics in 19982 and ML-based models quickly overtook human 

accuracy. Since then, dozens of articles have described efforts to train models 

for a range of physio-chemical properties associated with the field of high-

throughput proteomics, as reviewed by Neely et al. (submitted, this issue). While 

many efforts are still in the realm of basic exploratory research, ML approaches 

are increasingly being incorporated into mainstream tools and standalone 

predictive resources.3–6  

When training any ML model it is key to have suitable training and evaluation 

datasets. Likewise, in many fields of research where ML is applied, it is common 

to have a range of educational datasets, such as MNIST or IRIS, allowing 

newcomers to the field to easily learn common ML methodologies. Likewise, 

state-of-the-art (SOTA) models can use benchmarking datasets such as 

ImageNet or those available on the UCI Machine Learning Repository to 

compare their predictive capabilities. Similar to how the length of iris petals or 

the numbers of survivors of the Titanic have been modeled close to 50000 

times7, we seek to define proteomics datasets that can provide an entry point for 

ML modeling. 

Although there have been numerous efforts to explore the predictive capabilities 

of models, there are several barriers that limit widespread adoption in the field 

of predictive proteomics. First, there are substantial difficulties in accessing 

datasets in a suitable form for ML applications. A substantial amount of effort 

is required to prepare raw proteomics datasets into a usable form, requiring 

expertise in proteomics data processing and intimate knowledge of the many 

post-processing methods available. Recently, tools such as ppx8 and MS2AI9 

were created to facilitate this process, but they are still limited to certain use 

cases due to the complex nature of LC-IM-MS data. 

Second, while some ML-ready datasets are available on platforms such as 

Kaggle10 or in supplementary tables of publications, they are often difficult to 

find and lack long term maintenance and support post-publication. While there 

is no formal dataset consensus in the field, there are certain datasets that are 

often used for training such as ProteomeTools.11 Nevertheless, there are no 

widely used datasets used to compare the performance of tools developed by 

different researchers, making it difficult for new algorithms to be evaluated and 

compared to older tools. This issue is only further exacerbated by individual 

groups relying on different pre- and post-processing protocols, such as 

normalization of measurements and re-scoring of PSMs.3 

As an outcome of the 2022 Lorentz Center workshop on Proteomics and 

Machine Learning, we have created a web platform to facilitate the application 

of ML approaches to the field of MS-based proteomics. The resource is intended 

to provide a central focal point for curating and disseminating datasets that are 

ready to use for ML research, providing benchmark datasets for comparing 

different approaches, and encouraging new entrants into the field through 

expert-driven tutorials and other teaching materials. 

Here we describe how the resource has been developed using commonly 

available tools and with future ease of maintenance in mind. We provide a brief 

overview of the datasets that are currently available at the resource and how it 

can be expanded with more data. We also describe the initial set of tutorials that 

can be used as an introduction to the field of ML in proteomics. 

The Resource 

The primary entry point for the resource is the ProteomicsML.org website. It 

provides pages for general introductory datasets that are pre-processed and ready 

for training or evaluation, and pages for teaching resources and tutorials for 

those new to ML in proteomics. The code base for the website is maintained via 

a GitHub repository, and therefore is easy to maintain and amenable to outside 
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contributions from the field. We also collaborated with PRIDE to host larger 

datasets on a dedicated FTP server for ProteomicsML. 

A key goal of ProteomicsML is to grow together with the field, which is why 

we provide experts with a contributing guide on how to upload datasets and 

tutorials for specific ML workflows or algorithms. After curation by the 

maintainers, contributions are automatically published on the website at 

ProteomicsML.org and are freely accessible for other researchers. 

For many LC-IM-MS properties, such as retention time and fragmentation 

intensity, well-performing ML models have already been published. We aim to 

provide suitable datasets and tutorials to easily reproduce these results in an 

educational fashion. All datasets on the platform are organized by data type, and 

should ideally be provided in a simple format that is suitable for direct import 

into ML toolkits. Each data type can contain one or more datasets for different 

purposes, and each dataset should be sufficiently annotated with metadata, e.g., 

its origin, how it was processed, and relevant citations.  

Along with well-annotated datasets, the platform provides users with in-depth 

tutorials on how to download, import, handle, and train various ML models. 

Many of the LC-IM-MS data types require certain, sometimes complicated, 

preprocessing steps in order to be fully compatible with ML frameworks. For 

this reason, we believe it to be crucial to provide guidelines on these processes 

to ultimately lower the entry barriers for new users to the field. Tutorials on 

ProteomicsML can be attribute- or dataset-specific, allowing new tutorial 

submissions to focus on the direct interactions with specific ML models or 

methodologies, or to focus on a certain aspect of data preprocessing.  

Often when new modeling approaches are published, they are accompanied by 

datasets with novel pre- and post-processing steps. With ProteomicsML, the new 

data and approach can be uploaded to the site along with a unified metadata entry 

and an accompanying tutorial that improves reproducibility and facilitates 

benchmarking by the community. 

Data types 

The original raw data for proteomics datasets currently included in 

ProteomicsML.org have already been made publicly available through 

ProteomeXchange12, mostly via the PRIDE Archive.13 Instead, the data hosted 

at ProteomicsML are provided in an ML-ready format, with links to original 

metadata and raw files for full provenance. Even though the datasets at 

ProteomicsML do not contain raw files, we do aim to provide users with 

extensive tutorials on how to process raw data into ML-ready formats. 

ProteomicsML currently contains datasets and tutorials for fragmentation 

intensity, ion mobility, retention time, and protein detectability. More data types 

can easily be added in the future, as the platform evolves along with the field. 

(1) Retention time. Due to retention time playing a major role in modern peptide 

identification workflows, it is one of the most explored properties in predictive 

proteomics. This is why we have provided multiple retention time datasets from 

various sources. We have combined several previously released ML-ready 

datasets - such as the Sharma et al. dataset from Kaggle and the DLOmix dataset 

- with a newly compiled multi-tiered dataset from the ProteomeTools synthetic 

peptide library.11 From the latter, we have generated datasets of three sizes: 

100,000 data points (small), well suited for newcomers; (ii) 250,000 data points 

(medium), and (iii) 1 million data points (large), well suited for larger-scale ML 

training or benchmarking. As amino acid modifications can complicate the 

application of ML in proteomics, these three tiers do not contain any modified 

peptides. Nevertheless, to train models for more real-life applications, we have 

also included an additional dataset tier containing 150,000 oxidized peptides, as 

well as a mixed dataset containing 150,000 oxidized and 150,000 unmodified 

peptides. These datasets require minimal data preparation, although we still 

provide two distinct tutorials on methods to incorporate these datasets into deep 

learning (DL) based  models. In addition to preprocessed data, we also provide 

a detailed tutorial that combines and aligns retention times between runs from 

MaxQuant evidence files.14 The output of this tutorial is a fully ML-ready file 

for retention time prediction. 

(2) Fragmentation intensity. While it is easy to calculate the m/z values of 

theoretical peptide spectra, fragment ion peak intensities follow complex 

patterns that can be hard to predict. Nevertheless, these intensities can play a key 

role in accurate peptide identification.15 For this reason, fragment ion intensity 

prediction is likely the second most explored topic, and which is why we choose 

to implement comprehensive datasets and tutorials for this data type. Since there 

are many attributes of peptides that affect their fragmentation patterns, the pre-

processing steps of fragmentation data are more complex, and can be 

substantially different from lab to lab. For this reason, we have composed two 

separate tutorials, one that mimics the Prosit data processing approach on the 

ProteomeTools datasets, and one that mimics the MS2PIP data process on a 

consensus human HCD dataset.16 For datasets in this category it is difficult to 

provide a simple format with unified columns, as the handling and pre-

processing steps differ significantly from model to model. Currently, there is one 

tutorial available on ProteomicsML describing the data processing pipeline from 

raw file to Prosit-style annotation, and we believe that with future additions we 

can provide users with tutorials for additional processing approaches. 

(3) Ion mobility. Ion mobility is a technique to separate ionized analytes based 

on their size, shape, and physio-chemical properties.17 Initially the techniques 

for ion mobility propelled the ions with an electric field through a cell with inert 

gas where the ions collide with the inert gas without fragmentation. Separation 

is then achieved by the ions traveling faster or slower in the electric field (i.e., 

based on their charge) through the collisions with the gas (i.e., based on shape 

and size). Traveling wave ion mobility (TWIMS) works on the same principle 

but pushes the ions forward through the ion mobility cell with a wave of electric 

field.18 Trapped ion mobility (TIMS) reverses this operation by trapping the ions 

in an electric field and forcing them forward by collision with the gas.19 From 

any of the different ion mobility techniques one can derive the collisional cross-

section (CCS) in Ångströms squared with the use of calibration analytes that 

have a known CCS. Historically most methods were based on molecular 

dynamics models that calculate the CCS from first principles in physics.20 Lately 

the field has published multiple ML and DL approaches for both peptide and 

metabolite CCS prediction.21–23 The tutorials made available in ProteomicsML 

use both TIMS and TWIMS data, where the large TIMS data set is from Meiers 

et al.23 (718,917 data points) and the TWIMS data is from Puyvelde et al.24 (6268 

data points). The tutorial is a walkthrough that trains linear models to more 

complex non-linear models (e.g., DL based networks) showing advantages and 

disadvantages of the learning algorithms for CCS prediction. 

(4) Protein detectability. Modern proteomic methods and instrumentation are 

now routinely detecting and quantifying the majority of proteins thought to be 

encoded by the genome of a species.25 Yet even after gathering enormous 

amounts of data, there is always a subset of proteins that remains refractory to 

detection. For example, even through tremendous effort focused on the human 

proteome, the fraction of unobserved proteins has been pushed just below 

10%.26,27 It remains unclear why certain proteins remain undetected, though 

machine learning has been applied to explore which properties most strongly 

influence detectability (as reviewed within).28 One can compute a set of 

properties for a proteome and then train a model using those properties based on 

real world observations of the proteins that are detected and the proteins that 

aren’t detected. The model can be trained to learn which properties separate the 

detected from the undetected. Such a model has further utility to highlight 

proteins that have properties that should make them belong to the detected 

group, but yet are not, as well as proteins that should belong to the undetected 

group, and yet they are detected. To facilitate this we have included a dataset 

that is based on an extensive study of a proteome: the Arabidopsis 

PeptideAtlas.29,30 This dataset is based on the 2021 build, which has 52 datasets 

reprocessed to yield 40 million peptide-spectrum matches and good coverage of 

the Arabidopsis thaliana proteome. Proteins in the dataset are categorized as 

either “canonical”, the strongest evidence of detection, or “not observed” if 

known peptides are not identified. Along with these class labels, the dataset 

contains various protein properties such as molecular weight, hydrophobicity, 

and isoelectric point that could be crucial for classification purposes. The dataset 

has an accompanying tutorial that illustrates how to analyze the data with a 

multilayer perceptron model to classify the observability of peptides. 

Overall, these initial dataset submissions and tutorials leave room for a range of 

future expansion, until the community resource contains datasets for all 

properties previously and currently being explored in the field of proteomics. It 

is also open for user submissions, allowing researchers to upload their data in a 

standardized fashion for more reproducible science, along with in-depth tutorials 

on their data handling and ML methodologies. Our hope is that this will shape 

the future of predictive proteomics, in favor of being more introducible, 

standardized and reproducible. 

Additionally, we have compiled a list of proteomics publications that utilize ML, 

along with a list of ProteomeXchange datasets used by each of the publications 

(Supplementary Table 1). Each of these ProteomeXchange datasets have been 

given a set of tags to indicate the nature of the usage in the publications (e.g., 

http://proteomicsml.org/
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benchmarking, retention time, deep learning, etc.) as seen in Supplementary 

Table 231. Furthermore, these tags have also been added to the respective PRIDE 

entries, which allows the tags to easily be searched, and for users to compile 

their ideal dataset, if ProteomicsML does not already contain one. 

Conclusion 

We have presented ProteomicsML.org, a comprehensive resource of datasets 

and tutorials for every ML practitioner in the field of MS-based proteomics. 

ProteomicsML contains multiple datasets on a range of LC-IM-MS peptide 

properties, allowing computational proteomics researchers to compare new 

algorithms to the state-of-the-art models, as well as providing newcomers to the 

field with an easier starting point without requiring immediate in-depth 

knowledge of the entire proteomics analysis pipeline. We believe that this 

resource will aid the next generation of ML practitioners, and provide a stepping 

stone for more open and reproducible science in the field. 

Supporting Information 

Supplementary Table 1: Proteomics ML publications along with links to the 

ProteomeXchange datasets used for training or testing. 

Supplementary Table 2: Public ProteomeXchange datasets that have been used 

for ML training or benchmarking.  
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