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ABSTRACT 18 
Objective: Bowel movement frequency (BMF) variation has been linked to changes in the 19 
composition of the human gut microbiome and to many chronic conditions, like metabolic 20 
disorders, neurodegenerative diseases, chronic kidney disease (CKD), and other intestinal 21 
pathologies like irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). Slow 22 
intestinal transit times (constipation) are thought to lead to compromised intestinal barrier 23 
integrity and a switch from saccharolytic to proteolytic fermentation within the microbiota, 24 
giving rise to microbially-derived toxins that may make their way into circulation and cause 25 
damage to organ systems. However, these phenomena have not been characterized in 26 
generally-healthy populations, and the connections between microbial metabolism and the 27 
early-stage development and progression of chronic disease remain underexplored.  28 
Design: Here, we examine the phenotypic impact of BMF variation across a cohort of over 29 
2,000 generally-healthy, community dwelling adults with detailed clinical, lifestyle, and 30 
multi-omic data. 31 
Results: We show significant differences in key blood plasma metabolites, proteins, 32 
chemistries, gut bacterial genera, and lifestyle factors across BMF groups that have been 33 
linked, in particular, to inflammation and CKD severity and progression.  34 
Discussion: In addition to dissecting BMF-related heterogeneity in blood metabolites, 35 
proteins, and the gut microbiome, we identify self-reported diet, lifestyle, and psychological 36 
factors associated with BMF variation, which suggest several potential strategies for 37 
mitigating constipation and diarrhea. Overall, this work highlights the potential for 38 
managing BMF to prevent disease. 39 
 40 

What is already known about this topic: Constipation and diarrhea are linked to several 41 
chronic diseases, like IBD, CKD, and neurodegenerative disorders. Chronic constipation, in 42 
particular, is associated with the increased production of microbially-derived uremic toxins 43 
in the gut due to an ecosystem-wide switch from fiber fermentation to protein fermentation. 44 
A build-up of these gut-derived toxins in blood, like p-cresol, has been associated with CKD 45 
disease progression and severity.  46 

What this study adds: While prior work has demonstrated associations between microbially-47 
derived uremic toxins, constipation, and CKD severity/progression, here we show similar 48 
signatures in a generally-healthy cohort. Overall, we map out the molecular phenotypic 49 
effects of aberrant BMFs across individuals without any apparent disease, and show how 50 
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these effects precede, and may contribute to, the development of chronic disease. We find 51 
that certain lifestyle and dietary patterns, like higher levels of exercise, reduced anxiety 52 
levels, a more plant-based diet, and drinking more water, are associated with a more optimal 53 
BMF range. 54 

How this study might affect research, policy, or practice: Overall, we suggest that even 55 
mild levels of chronic constipation may cause damage to organ systems over time and 56 
ultimately give rise to chronic diseases, like CKD or neurodegeneration. These findings pave 57 
the way for future research into early interventions for individuals at risk of developing 58 
chronic diseases related to BMF abnormalities. Managing BMF abnormalities prior to disease 59 
development may be an important disease prevention strategy, but this will require further 60 
evidence through longitudinal human intervention trials.  61 

 62 

INTRODUCTION 63 

The gut microbiome influences human health in a number of ways, from mediating early life 64 

immune system development [1,2], to determining personalized responses to nutritional 65 

interventions [3,4] and influencing the central nervous system [5,6]. Stool transit time, 66 

defined as the rate at which stool moves through the gastrointestinal tract, is a major 67 

determinant of the composition of the human gut microbiota [7]. Transit time is affected by 68 

diet, hydration, physical activity, host mucus production, microbe- and host-derived small 69 

molecules (e.g., bile acids or neurotransmitters), and peristaltic smooth muscle contractions 70 

in the gastrointestinal tract [8,9]. Stool transit time can be inferred or measured using the 71 

Bristol Stool Scale [10], edible dyes [7], indigestible food components (e.g., corn) [11], or self-72 

reported bowel movement frequency (BMF) [12]. Aberrant gastrointestinal transit times have 73 

been implicated as risk factors in a number of chronic diseases [13–15].   74 

Shorter stool transit times (e.g. diarrhea, defined as more than three watery stools per 75 

day), have been associated with lower gut microbiome alpha diversity, increased 76 

susceptibility to enteric pathogens, and poorer overall health [12,16–18]. Longer stool transit 77 

times (e.g. constipation, defined as fewer than three hard, dry stools per week), have been 78 

associated with higher gut microbiome alpha diversity, with an enrichment in microbially-79 

derived urinary metabolites known to be hepatotoxic or nephrotoxic, and with an increased 80 

risk for several chronic medical conditions, including neurological disorders and chronic 81 
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kidney disease (CKD) severity [13,19–21]. Interestingly, the relationship between higher gut 82 

alpha-diversity and constipation contrasts with the common belief that increased diversity is 83 

a positive marker of gut health, and suggests a more complex relationship between gut 84 

commensal diversity and human health  [12,13].  85 

Constipation is a known risk factor for CKD severity and end-stage renal disease 86 

(ESRD) progression [22,23]. In one study, up to 71% of dialysis patients suffered from 87 

constipation [24], while the prevalence of constipation in the general population was 14.5% in 88 

adults under 60 years old and 33.5% in those over 60 [25]. A nationwide study of veterans 89 

found an incrementally higher risk for renal disease progression in those who reported 90 

increasingly severe constipation [26]. However, while it is clear that morbidity and mortality 91 

risk worsen with constipation in those with active CKD, potential connections between the 92 

gut microbiota and the development and early-stage kidney disease are not yet established. 93 

Both constipation and CKD associate with declines in gut microbiota-mediated short-chain 94 

fatty acid (SCFA) production and a rise in the production of amino acid putrefaction 95 

byproducts, including several toxic metabolites, such as p-cresol sulfate (PCS), which has 96 

been causally implicated in renal tissue damage [27]. This is consistent with a community-97 

wide transition from saccharolytic to proteolytic fermentation due to the exhaustion of 98 

dietary fiber with longer GI transit times [13,28]. Thus, while the relationships between BMF 99 

in healthy individuals and future CKD pathogenesis, along with damage to other organ 100 

systems like the central nervous system, are not yet understood, the gut metabolic 101 

phenotype associated with low BMF in a prodromal cohort suggests an early causal 102 

connection. 103 

In this study, we focus on categories of self-reported BMF in a large population of 104 

generally-healthy individuals with a wide range of molecular phenotypic data, including data 105 

on gut microbiome composition, in order to quantify the phenotypic impact of BMF on blood 106 
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plasma metabolites, blood proteins, clinical chemistries, and gut microbiome composition in 107 

a pre-disease context. By exploring the molecular phenotypic consequences of BMF variation 108 

in a generally-healthy cohort, we hope to identify early-stage biomarkers for CKD risk and 109 

provide further insight into the possible causal connections between BMF and several 110 

chronic, non-communicable diseases. Finally, we assess how demographic, dietary, lifestyle, 111 

and psychological factors are associated with variation in BMF, in order to identify potential 112 

interventions for manipulating BMF and BMF-associated phenotypes. 113 

 114 

RESULTS 115 

A cohort of generally-healthy individuals 116 

3,955 Arivale Scientific Wellness program participants with BMF data were analyzed (see 117 

Materials and Methods). Arivale, Inc. (USA), was a consumer scientific wellness company 118 

that operated from 2015 until 2019. Briefly, participants consented to having their health, 119 

diet, and lifestyle surveyed through an extensive questionnaire, along with blood and stool 120 

sampling for multi-omic and blood plasma chemistries data generation (Fig. 1). Of those 121 

participants that self-reported their ethnicity, 80.5% identified as “White”, 10.2% identified as 122 

“Asian”, 2.9% identified as “Black or African-American”, 0.3% identified as “American Indian 123 

or Alaska Native”, 0.8% identified as “Native Hawaiian or other Pacific Islander”, and 5.4% 124 

identified as “Other”. Additionally, Arivale participants responded 92.9% “Non-Hispanic” 125 

versus 7.1% “Hispanic”. Of the 109 Hispanic cohort participants, 59.6% also self-reported 126 

white.  Respondents were in the United States, predominantly from the Pacific West. These 127 

individuals were generally-healthy, non-hospitalized and aged between 19 and 87 years old. 128 

The population was 61% female with a mean ± s.d. body mass index of 27.47 ± 6.15. Self-129 

reported BMF values (responses to typical number of bowel movements per week) were 130 

grouped into four categories (Fig. 1), which we defined as: “constipation” (≤ 2 bowel 131 
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movements per week), “low-normal” (3-6 bowel movements per week), “high-normal” (1-3 bowel 132 

movements per day), and “diarrhea” (4 or more bowel movements per day). We first looked at 133 

potential associations between BMF and relevant covariates: sex, age, BMI, and estimated 134 

glomerular filtration rate (eGFR), a measure of renal function (N = 3,682; Fig. 2; Table S2). 135 

When BMF was coded as an ordinal dependent variable and regressed using ordered 136 

proportional odds logistic regression (POLR), only BMI (POLR, FDR-corrected p = 5.09E-6) 137 

and sex (POLR, FDR-corrected P = 1.23E-23) showed significant, independent associations 138 

with BMF (Table S2), with females and individuals with lower BMIs tending to report lower 139 

BMFs (Fig. 2). All covariates listed above were included in downstream regressions, 140 

independent of whether or not they showed a direct association with BMF. The high-normal 141 

BMF group was chosen as the reference for all downstream regressions throughout the 142 

manuscript where BMF was encoded as a categorical variable. 143 

 144 

Gut microbiome composition and activity across BMF categories 145 

For a small subset of the Arivale participants (N=38)  shotgun metagenomic sequencing 146 

data were available in addition to 16S rRNA gene amplicon sequencing data. For this subset, 147 

we calculated peak-to-trough ratios (PTR, a proxy for growth/replication rate) for abundant 148 

bacterial taxa within each sample. We saw a significant positive pairwise association 149 

between community-average PTRs and BMF (Fig. 2C, post-hoc t-test low-normal vs. high-150 

normal, P = 0.010), which suggests that we tend to capture a larger number of commensal 151 

bacteria in their exponential growth phase when we sample them from individuals with 152 

higher BMFs. 153 

Next, we looked at a larger cohort of individuals with 16S amplicon sequencing data 154 

from stool (N=2,709). Amplicon sequence variant (ASV) richness (linear regression, P = 155 
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9.02E-4) and Shannon diversity (linear regression, P = 5.89E-3) were both negatively 156 

associated with BMF, independent of covariates (BMF encoded as an ordinal variable with a 157 

linear coefficient, Fig. 3). Pielou’s evenness, on the other hand, was positively associated 158 

with BMF  (linear regression, P = 1.81E-2), independent of covariates (Fig. 3). Thus, slow 159 

colonic transit times as seen in constipation correspond to a higher community richness and 160 

lower community evenness. 161 

Differential abundance analysis of the commensal gut bacterial genera across BMF 162 

categories was conducted using beta-binomial regression (CORNCOB) with BMF encoded as 163 

a categorical variable. Of the 68 genera that passed our prevalence filter (i.e., detection 164 

across ≥ 30% of the individuals), 47 were significantly associated with BMF (see Table S3 for 165 

detailed list of coefficients and p-values), independent of covariates and following an FDR 166 

correction for multiple tests on the likelihood ratio test (LRT) P values (LRT, FDR-corrected P 167 

< 0.05). Of the 47 significant taxa, we plotted the top ten most abundant (Fig. 4A-J and 168 

Table S4) and the following top 10 most significant taxa (i.e., according to the LRT FDR-169 

corrected P value), including Akkermansia (Fig. 4K-T). Bacteroides, Blautia, 170 

Family_XIII_AD3011_group, Ruminococcaceae_NK4A214_group, Ruminococcaceae UBA1819, 171 

Ruminococcaceae_UCG-005, Anaerotruncus, Butyricicoccus, Lachnospiraceae_UCG-004, 172 

Ruminococcaceae GCA-900066225, Ruminococcaceae Ruminiclostridium_5 were each 173 

differentially abundant between constipation and the high-normal (reference) category (LRT, 174 

FDR-corrected ratio test P < 0.05). Agathobacter, Subdoligranulum, Lachnospira, 175 

Lachnoclostridium, Butyricicoccus, and Lachnospiraceae_UCG-004 all showed decreasing 176 

abundances with lower BMFs (LRT, FDR-corrected P < 0.05). Lachnoclostridium rose in 177 

abundance with BMF, and was highest in individuals who reported having diarrhea (LRT, 178 

FDR-corrected P < 0.05). In contrast, Blautia, Alistipes, Ruminococcaceae UCG-005, 179 

Ruminococcus_2, UBA1819, Ruminococcaceae_NK4A214_group, Anaerotruncus, GCA-180 
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900066225, and Ruminiclostridium_5 showed the opposite behavior, where decreasing BMF 181 

was associated with a increasing abundance of these taxa (LRT, FDR-corrected P < 0.05). 182 

Some genera appeared to exhibit local minima or maxima (U-shaped vs. peaked relationship 183 

with BMF), indicating non-linear trends. These taxa included Bacteroides, Faecalibacterium, 184 

GCA-900066225, Akkermansia, and a genus from Family XIII AD3011. However, we had 185 

limited power to confidently identify putative non-monotonic trends due to the small number 186 

of individuals in the constipation and diarrhea groups. 187 

 188 

Variation in blood metabolites across BMF categories 189 

Blood metabolite-BMF regression analyses were run using a generalized linear modeling 190 

(GLM) framework (LIMMA), with BMF as a categorical variable. Of the metabolites that 191 

passed our abundance and prevalence filters (N=1,296, see Materials and Methods), 27 192 

unique metabolites were significantly associated with BMF (0 with diarrhea, 24 with low-193 

normal, 4 with constipation, and 1 overlapping metabolite, PCS, associated with both low-194 

normal and constipation), independent of covariates and following an FDR correction for 195 

multiple tests (GLM, FDR-corrected P < 0.05, Fig. 5, Table S5). 20 out of 27 metabolites were 196 

enriched in the low-normal and/or constipation BMF groups, showing a monotonically 197 

decreasing trend with BMF, while the rest showed a monotonically increasing trend (Fig. 5). 198 

One metabolite, phenylacetylcarnitine, showed a slight, apparent local minimum (“U-199 

shaped” behavior) with lowest levels in the high-normal BMF category (Fig. 5). Several 200 

unannotated metabolites (e.g. X-12544) showed significant associations with BMF (GLM, 201 

FDR-corrected P < 0.05), but their identities and physiological roles are unknown (Table S5). 202 

 203 
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Blood plasma chemistries across BMF categories 204 

Of the 68 blood plasma chemistries tested, four were significantly different across BMF 205 

categories after adjusting for covariates and multiple-testing (N=3,682, GLM, FDR-corrected 206 

P < 0.05). These included Omega-6/Omega-3 ratio, eicosapentaenoic acid (EPA), 207 

homocysteine, and eosinophils levels in the blood (Fig. 6). All of these were elevated in the 208 

low-normal BMF category compared to the high-normal reference (FDR-corrected P < 0.05), 209 

except for EPA, which was lower in the low-normal BMF group (Fig. 6 and Table S6). 210 

 211 

Blood proteins across BMF categories 212 

Of the 274 blood proteins that passed our prevalence filter (see Materials and Methods), 26 213 

showed significant associations with BMF after adjusting for covariates and multiple-testing 214 

(N=1,999, GLM, FDR-corrected P < 0.05). Hepatitis A virus cellular receptor 1 (HAVCR1) was 215 

depleted in the low-normal BMF category, relative to the reference group (GLM, FDR-216 

corrected P < 0.05). The remaining 25 proteins were significantly depleted in the high BMF 217 

(diarrhea) group, relative to the reference group (GLM, FDR-corrected P < 0.05). The most 218 

significant diarrhea-related protein (GLM, FDR-corrected P < 0.05) was TNFRSF11B (tumor 219 

necrosis factor receptor superfamily, member 11b; Fig. 7, Table S7). 220 

 221 

Self-reported diet, lifestyle, anxiety and depression histories associated with BMF 222 

categories and demographic covariates 223 

182 survey questions on mental and physical health, diet, and lifestyle were examined from 224 

3,002 participants from the Arivale cohort in order to identify covariate-independent 225 

associations with BMF. Tests were run using the “polr” package in R (ordinal 226 

regression)[29], including the same set of covariates from the prior analyses, and with BMF 227 

coded as a categorical variable with high-normal BMF as the reference group (Fig. 8). 228 
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Response categories for each question ascended ordinally in value or intensity (i.e., low to 229 

high), so that a positive association represented an increase in that variable. Across the 182 230 

questions, the top results with significant odds ratios related to BMF categories were 231 

displayed relative to high-normal BMF (Fig. 8), colored by the variable category 232 

(Diet/Lifestyle or Digestion/Health). BMI, age, and sex were also associated with many of 233 

these questionnaire-derived features, independent of BMF (Fig. 8). In particular, females took 234 

more laxatives, ate more vegetables (including salad and cruciferous vegetables), drank 235 

more water, ate breakfast more often, and suffered from greater abdominal pain and 236 

bloating. Males, on the other hand, tended to exercise more frequently, drank alcohol more 237 

frequently, had an easier time passing bowel movements, and were more likely to have used 238 

cholesterol-reducing drugs (Fig. 8). Constipation was negatively associated with exercise, 239 

alcohol intake, bowel movement completion, diarrhea symptoms, and ease of bowel 240 

movement, and positively associated with bloating, cholesterol drug use, reduced appetite, 241 

and reported laxative usage, independent of covariates (Fig. 8). Membership in the diarrhea 242 

BMF category was positively associated with self-reported diarrhea (i.e., a separate question 243 

from BMF on the questionnaire), increased bloating, and abdominal pain (Fig. 8). 244 

A subset of participants self-reported their history of depression and anxiety, 245 

including: “self-current”, “self-past”, and “family” history of depression and anxiety (see 246 

Supplement). After logistic regression, one question related to “self-current” history of 247 

depression appeared marginally significant (logistic regression, FDR-corrected P < 0.1), with 248 

a “true” response associated with constipation. Similarly, questions related to a “self-past” 249 

(any time) history of anxiety (logistic regression, FDR-corrected P = 0.01) and a more recent 250 

“self-past” (within the last year) history of anxiety (logistic regression, FDR-corrected P = 251 

0.048) were significantly associated with constipation. 252 

 253 
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DISCUSSION 254 

In this study, we delve into the multi-omic fingerprint of cross-sectional BMF variation in a 255 

large, generally-healthy population. We find that aberrant BMFs are associated with a wide 256 

array of phenotypic features, from changes in the ecological composition of the gut 257 

microbiota, to variation in plasma metabolites, clinical chemistries, and blood proteins. 258 

Overall, we observe an enrichment of microbially-derived uremic toxins resulting from 259 

protein fermentation in individuals with lower BMFs. These toxins have been implicated in 260 

disease progression and mortality in CKD [23,30] and many of the same metabolites have 261 

been associated with other chronic diseases like neurodegeneration [31,32]. We suggest that 262 

BMF should be managed throughout the lifespan in order to minimize the build-up of 263 

microbially-derived toxins in the blood and to prevent chronic disease. We provide a number 264 

of common-sense dietary and lifestyle suggestions for managing BMF, which emerge from 265 

our analysis of this generally-healthy cohort. 266 

 267 

Diet, lifestyle, mood, and demographic factors associated with BMF variation 268 

Of the core set of covariates used in these analyses, only sex and BMI were independently 269 

associated with BMF, with females and individuals with lower BMIs showing lower average 270 

BMF (Fig. 2). Prior work has shown that women are at higher risk of kidney dysfunction [33] 271 

and that both BMF and kidney function decline with age [34,35]. In addition to demographic 272 

factors associated with BMF, the questionnaire results indicate a number of dietary and 273 

lifestyle factors that influence BMF, like exercise frequency, eating fruits and vegetables (i.e., 274 

sources of dietary fiber), sleep, and stress (Fig. 8). We also saw evidence that constipation 275 

was marginally associated with depression and significantly associated with anxiety, which 276 

aligns with prior work showing higher prevalence of anxiety and depression (between 22-277 

33%) on the Hospital Anxiety and Depression Scale (HADS) and the Mini International 278 
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Neuropsychiatric Interview (MINI) in patients with chronic constipation [36]. The strong 279 

positive association between reported cholesterol drug use and constipation suggests that 280 

these drugs may influence BMF directly, or perhaps that a “heart healthy” diet/lifestyle that 281 

precludes the need for cholesterol medication promotes a healthier BMF range. Diets 282 

enriched in complex plant-based carbohydrates, such as starches and fibers, encourage 283 

saccharolytic fermentation in the gut microbiome, which likely reduces the level of 284 

proteolytic fermentation associated with kidney disease risk and other GI symptoms (Fig. 8). 285 

 286 

The association between BMF and chronic disease may be mediated by the gut  287 

microbiota 288 

The barrier integrity of the intestinal epithelium, as well as gastrointestinal peristalsis, can 289 

be impaired by the enrichment or depletion of certain microbially-derived metabolites 290 

[28,37]. BMF-related changes in the composition of the gut microbiota observed in this study 291 

reveal a reduction in SCFA-producing genera, like Bacteroides and Faecalibacterium, in the 292 

aberrant BMF groups. Reduced SCFA production is known to weaken smooth muscle 293 

contractions that drive peristalsis [38–40], acting as a positive feedback on constipation, and 294 

inducing mechanical damage to the epithelium [41–43], which may contribute to subclinical 295 

inflammation and disruption of epithelial integrity [30,44,45]. This subclinical inflammation 296 

and epithelial damage may give rise to chronic peripheral and systemic inflammation over 297 

time and allow for excess luminal metabolites to leak into the blood, which can drive tissue 298 

damage throughout the body and exacerbate conditions like CKD [30,46–48].  299 

Many of the genera and metabolites that were associated with constipation in this 300 

study have been associated with constipation in other disease cohorts and with a variety of 301 

risk factors for chronic diseases, like CKD, cardiovascular disease, and metabolic syndrome 302 

[8,23,49,50]. Alistipes and Ruminococcus were enriched in end-stage renal disease (ESRD) 303 
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patients [51], as well as in our generally-healthy cohort at lower BMF levels (Fig. 4). In 304 

general, families like Ruminococcaceae and Lachnospiraceae dominate the pool of significant 305 

BMF-microbiome hits (Fig. 4). In particular, Roseburia, a genus in the Lachnospiraceae family 306 

observed to be lower in abundance at all stages of CKD and ESRD [52], was found to be 307 

lower in abundance in individuals with lower BMFs in our cohort (Fig. 4). Akkermansia, a 308 

mucus-degrading genus generally associated with metabolic health [53], but also enriched in 309 

patients with Parkinson’s disease (PD) and in constipated individuals [32,54], was enriched 310 

at lower BMF in our cohort (Fig. 4). Akkermansia was positively associated with constipation 311 

across several studies [54], likely due to its specialization on breaking down host mucus 312 

rather than dietary substrates, but its absence also appears to have a detrimental impact on 313 

metabolic health and CKD progression [53,55,56]. Finally, we saw that the average gut 314 

bacterial community replication rate was positively associated with BMF (Fig. 2) and 315 

negatively associated with the production of several protein fermentation byproducts that 316 

are known uremic toxins (Fig. 5). Findings such as these suggest that constipation may drive 317 

pre-clinical risk and progression towards chronic diseases, mediated in part by BMF-induced 318 

switch from saccharolytic to proteolytic metabolism in the gut microbiota. 319 

 320 

BMF-associated blood metabolites are implicated in chronic disease risk and severity 321 

Several blood metabolites found to be enriched at lower BMF were gut microbiome-derived 322 

uremic toxins linked to kidney function decline and neurodegenerative diseases. PCS, for 323 

example, has been associated with deteriorating kidney function and with damage to 324 

nephrons [57,58]. PCS showed the strongest association with BMF (Fig. 5), exhibiting a dose-325 

response effect, increasing substantially in both the low-normal and constipation categories 326 

(Fig. 5). P-cresol glucuronide (PCG) is another uremic toxin, derived from microbe-produced 327 

p-cresol, which was significantly enriched at lower BMF  (Fig. 5). Overall, we see an 328 
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enrichment in several microbially-derived toxins in the blood of generally-healthy individuals 329 

with lower BMFs, like PCS, PCG, phenylacetylglutamine, 6-hydroxyindole sulfate, and 330 

phenylacetylcarnitine [58–60], which may drive long-term chronic disease risk.  331 

 332 

BMF-associated blood plasma chemistries results linked to inflammation and diet 333 

Eicosapentaenoic acid (EPA) levels were lower in the lower-BMF groups (Fig. 6). Higher 334 

levels of EPA have been associated with lower inflammation [61] and lower cardiovascular 335 

disease risk [62]. Conversely, the Omega-6/Omega-3 ratio, homocysteine levels, and 336 

eosinophil counts, have all been positively associated with inflammation [63,64], and these 337 

features were elevated in the low-normal BMF group (Fig. 6). The Omega-6/Omega-3 ratio, in 338 

particular, may be related to higher levels of pro-inflammatory Omega-6 lipids and lower 339 

levels of anti-inflammatory Omega-3 lipids in the diet [65]. A diet enriched in processed foods 340 

and animal products is known to drive increased risk of chronic kidney disease [66,67]. The 341 

directionality of these associations point towards lower BMFs being associated with higher 342 

systemic inflammation, which may lead to increased chronic disease risk potentially through 343 

compromised gut epithelia.  344 

 345 

BMF-associated proteins connected to inflammation and renal injury 346 

Hepatitis A virus cellular receptor 1 (HAVCR1) was the only protein that was depleted in the 347 

low-normal BMF group (Fig. 7A). HAVCR1 is, notably, an early biomarker for acute renal 348 

injury and a predictor of long-term renal disease, as it is shed into the urine following kidney 349 

injury [68]. Tumor necrosis factor receptor superfamily, member 11b (TNFRSF11B) showed 350 

the strongest association with BMF and was enriched in individuals with diarrhea (Fig. 7B). 351 

TNFRSF11B dysregulation has been associated with osteoporosis and with a number of 352 

cancers, and TNFSF members are involved in the pathogenesis of irritable bowel syndrome 353 
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(IBS), a disease often associated with diarrhea [69,70]. The remaining proteins associated 354 

with aberrant BMFs were related to inflammation and undesirable immune responses, organ 355 

damage, and cancer (Fig. 7) [71,72]. 356 

 357 

Current limitations and considerations on designing future research 358 

There are some important limitations to consider when interpreting the results of this study. 359 

The generally-healthy cohort studied here was overwhelmingly “White”, predominantly 360 

female, and from the West Coast of the US, which limits the generalizability of these results. 361 

In addition, the diet, lifestyle, and mood data were self-reported and subject to biases and 362 

errors, and are not indicative of clinical diagnoses. In designing future follow-up trials, it 363 

would be ideal to manage BMF as a preventative measure for chronic disease and to target 364 

interventions that are low-risk with fewer side effects than drugs like laxatives. For example, 365 

BMF can be managed through exercise, hydration, and diet. However, high-fiber diets can 366 

lead to bloating and other issues in those with active disease. CKD patients, usually on 367 

multiple medications that may affect gut health and BMF, often need to eat a diet that 368 

restricts many plant-based fiber-rich foods because they contain high levels of potassium 369 

and phosphorus [73]. However, these low-fiber diets may act as a positive feedback on 370 

constipation and inflammation, as they promote protein fermentation in the gut. This 371 

highlights the importance of intervening at the prodromal stage, before disease manifests, 372 

when a healthy, plant-based diet is well-tolerated by the individual. Alternatively, low-373 

potassium and low-phosphorus, high-fiber diets could be formulated for CKD patients. 374 

Ultimately, future work should be done to assess the potential for managing BMF throughout 375 

the lifespan to reduce chronic disease risk. 376 
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 377 

Conclusion 378 

Bowel movement abnormalities, such as constipation or diarrhea, have been linked to 379 

diseases ranging from enteric infections [18], CKD, and IBD to dementia-related 380 

neurodegenerative diseases like Alzheimer’s disease (AD) and PD [31,74,75]. Indeed, we see 381 

many of the phenotypic markers of these diseases manifested in generally-healthy 382 

individuals who report having aberrant BMFs, with constipation in particular associated 383 

with a build up of microbially-derived uremic toxins in the blood. Mitigating chronic 384 

constipation may be key to reducing uremic, hepatic, and neurological toxin build-up in the 385 

blood. Our results underscore common-sense dietary and lifestyle changes, like increasing 386 

dietary fiber intake, eating a lower protein diet and exercising more, may help to normalize 387 

BMF and reduce BMF-associated phenotypic risk factors for chronic disease, well before the 388 

onset of disease.  389 

 390 

MATERIALS AND METHODS 391 

Institutional review board approval for the study 392 

The procedures for this study were reviewed and approved by the Western Institutional 393 

Review Board, under the institutional review board study number 20170658 for the Institute 394 

for Systems Biology and 1178906 for Arivale, Inc. 395 

 396 

Patient and Public Involvement Statement 397 

There was no patient or public involvement in the conception or implementation of this 398 

research study. 399 

 400 
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Generally-healthy cohort 401 

All study participants were subscribers in the  Arivale Scientific Wellness program (2015-402 

2019) and provide informed consent for the use of their anonymized, deidentified data for 403 

research purposes. Participants were community-dwelling, representative of the populations 404 

in Washington State and California (which are slightly leaner and healthier than other parts 405 

of the USA), over the age of 18, non-pregnant, but were not screened for the presence or 406 

absence of any particular disease. Participants provided questionnaire data, along with 407 

blood and stool samples that were used to generate blood plasma metabolomics, proteomics, 408 

chemistries, and gut microbiome data (Fig 1 and Table S1). 409 

Only baseline time point samples were used for each participant, prior to the 410 

beginning of a personalized wellness intervention. A 70% prevalence filter was implemented 411 

across the gut microbiome, blood plasma metabolomics, proteomics, chemistries, and ordinal 412 

questionnaire data analyses. This meant that each final feature in the data could contain no 413 

more than 30% missing data from the final cohort of samples in order to be retained for 414 

downstream analysis. For microbiome analyses, a filtered subcohort of 2,709 individuals with 415 

ASV-level taxa counts, BMF, sex, age, eGFR, and BMI data were selected. This filtering 416 

resulted in a total of 68 genera. For the metabolomics analysis, a cohort of 2,043 participants 417 

with BMF, sex, age, eGFR, BMI, and blood metabolomics data were selected. 973 418 

metabolites were retained for downstream analyses. 274 blood proteins that met the 419 

prevalence filter in the cohort of 1,999 individuals were retained for downstream analyses. A 420 

similar prevalence filter was applied to 3,682 samples with blood plasma chemistries data, 421 

resulting in 68 features retained for downstream analyses. Similarly, for ordinal regression of 422 

the questionnaire data (e.g. diet, lifestyle, and stress/pain/health factors,) using the 423 

respective R package, polr [29], we collated all the responses and filtered out questions that 424 

contained more than 30% “NAs”. We also excluded binary responses, which are incompatible 425 
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with ordinal regression using polr, which resulted in 277 variables across 2,291 participants, 426 

in addition to having paired data on age, sex, eGFR, BMI, and BMF. BMF data was captured 427 

from responses to a survey question on how many bowel movements an individual has per 428 

week, on average. The available responses to this question were: (1) Twice per week or less; 429 

(2) 3-6 times per week; (3) 1-3 times daily; or (4) 4 or more times daily. While the normal 430 

range of BMF encompasses both the second and third responses to this question (i.e., 431 

between three times a week and three times a day) [76], we chose to define 1-3 times per 432 

day (high-normal) as the reference group for the purposes of regression. 433 

 434 

Gut Microbiome Data 435 

Fecal samples from Arivale participants were collected (described in Diener et al [12] and 436 

detailed here) from proprietary at-home kits developed by two microbiome vendors (DNA 437 

Genotek and Second Genome) that stabilize the DNA collected at ambient room temperature. 438 

Using the KingFisher Flex instrument, the MoBio PowerMag Soil DNA isolation kit (QIAGEN) 439 

enabled the isolation of stool DNA from 250 ml of homogenized human feces, after performing 440 

an additional glass bead-beating step. Qubit measurement and spectrophotometry were also 441 

performed using an A260/A280 absorbance ratio. Either 250-bp paired-end MiSeq profiling of 442 

the 16S V4 region (Second Genome, USA) or the 300-bp paired-end MiSeq profiling of the 16S 443 

V3-V4 region (DNA Genotek, USA) was used to obtain the raw amplicon sequencing data 444 

(ASVs).  445 

16S amplicon sequencing was run on a MiSeq (Illumina, USA) with either paired-end 446 

300-bp protocol (DNA Genotek) or paired-end 250-bp protocol (SecondGenome). The FASTQ 447 

files were provided by the Illumina Basespace platform after the phiX reads were removed 448 

with basecalling. Length cutoffs of 250-bp for the forward reads and 230-bp for the reverse 449 

reads as well as manual inspection of the error rate across sequencing cycles were 450 
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determined from the respective profiles. Any greater than 2 expected errors under the 451 

Illumina error model resulted in eliminating that specific read from the data along with reads 452 

containing ambiguous (“N” nucleotides) base calls. Over 97% of the reads passed these 453 

filters, resulting in approximately 200,000 reads per sample. 454 

 Shotgun metagenomic sequencing libraries for Arivale samples were prepared by 455 

DNA Genotek using the NexteraXT kit, along with QC on a Bioanalyzer and quantification of 456 

DNA using qPCR for pooling. Sequencing was run on an Illumina NovaSeq6000 (300-457 

multiplex on S2 flow cell), with a paired-end 150-bp protocol. The target sequencing depth 458 

was 3Gb, equivalent to about 20M total reads per sample.  459 

Final truncated and filtered reads were then used to infer amplicon sequence variants 460 

(ASV) with DADA2. Each sequencing run separately resulted in its own error profiles.  The 461 

final ASVs and counts were then joined, with chimeras being removed using DADA2’s  462 

“consensus” strategy. After this step, almost 16% of all reads were removed. Taxonomic 463 

assignment of ASVs was then achieved using the naive Bayes classifier in DADA2 with the 464 

SILVA database (version 128). 465 

Wherever possible, the 16S gene in SILVA was used to perform by using an exact 466 

match of the inferred ASV to the gene. Nearly 90% of the reads were able to be classified 467 

down to the genus level, which was the taxonomic level chosen for this analysis. 3,694 468 

samples across 609 taxa were available from these methods, which were then filtered down 469 

to 68 taxa after using a 70% prevalence filter (no more than 30% of data was permitted to be 470 

missing per filtered taxa). The diversity of the gut microbiomes of the cohort was 471 

characterized and rarefied to an even depth across ASVs where count parity is preserved 472 

across samples. Observed ASVs, a measure of species diversity, were used to obtain 473 

Shannon diversity and Pielou’s evenness. After BMI, sex, age, and eGFR data were merged 474 

to the taxa dataset, 2,709 samples remained across the 68 taxa. 475 
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The diversity of the gut microbiomes of the cohort was characterized and rarefied to 476 

an even depth (using the “rarefy_even_depth( )” function in the phyloseq R package [77]; rng 477 

seed = 111) with observed amplicon sequence variants (ASV), a measure of species 478 

diversity, to obtain Shannon diversity and Pielou’s evenness. 479 

 480 

Olink Proteomics  481 

Blood plasma proteomic data were generated by Olink Biosciences using the ProSeek 482 

Cardiovascular II, Cardiovascular III, and Inflammation arrays. The proteins were filtered 483 

down to 274 proteins and 1,999 samples and included based on whether or not they had 30% 484 

or less missingness across samples as well as BMI, sex, age, and BMF data. NA data values 485 

were assumed to be below detection and imputed to be the median across samples for that 486 

particular protein. The values used for the proteomics analysis were from protein readings 487 

previously batch-corrected and normalized based on the overlapping reference samples 488 

within the batch plates. The corrected values were also scale-shifted to the reference sample 489 

and the original delivered data (using the seventh run as a baseline). The method is 490 

described further in the study by Zubair et al [78]. All data were merged with BMI, sex, age, 491 

and eGFR data for the cohort. 492 

 493 

Metabolon Metabolomics 494 

Metabolon obtained metabolomics data on the previously mentioned plasma samples using 495 

preparation, quality control, and collection methods described in previous studies [50]. 2,043 496 

total metabolites across 1,297 samples were filtered down using the same prevalence filter 497 

as for proteins. In this analysis, missing values were imputed to be the median of the non-498 

missing samples for the metabolite, and final downstream metabolites were log-transformed 499 

and merged with available BMI, sex, age, and eGFR data. 500 
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 501 

Blood Plasma Chemistries 502 

LabCorp and Quest phlebotomists collected blood from Arivale participants within 21 days 503 

of their gut microbiome samples being taken, during the same blood draw as the 504 

metabolomics and using methods described previously by Wilmanski et al and others [12]. 505 

Individuals were asked to abstain from alcohol, vigorous exercise, monosodium glutamate 506 

and aspartame at least 24 hours prior to drawing of the blood, as well as fasting at least 12 507 

hours beforehand. Blood samples were collected for blood plasma chemistries, metabolomics 508 

and proteomics at the same time, and within 21 days of stool sampling. BMI was calculated 509 

from weight and height using the following formula  ��� �  
������ �	�


������� ��

�
. 4,881 samples and 510 

127 laboratory values were filtered down using the same prevalence filtering as with 511 

metabolomics and proteomics. The final 68 features were log-transformed, with missing 512 

samples imputed to be the median value of the non-missing samples. These features were 513 

merged with other data and covariates. eGFR was calculated based on the CKD 514 

Epidemiology Collaboration (CKD-EPI) creatinine Equation (2021), as recommended by the 515 

current guidelines of the National Kidney Foundation [cite PMID: 34563581]: eGFRcr = 142 x 516 

min(Scr/�, 1)� x max(Scr/�, 1)-1.200 x 0.9938Age x 1.012 [if female], where Scr = standardized 517 

serum creatinine in mg/dL, � = 0.7 (female) or 0.9 (male), and � = -0.241 (female) or -0.302 518 

(male). 519 

  520 

Questionnaire Data  521 

4,402 self-reported results to questionnaire data with 3,002 samples were retrieved from 522 

Arivale participants at the beginning of the study. After filtration, 283 downstream features 523 

remained, which were subsequently filtered down again to 182 question features by 524 

removing factored features with less than 10 responses per level and at least 2 nonmissing 525 
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levels to the factor. Category responses were organized and numbered to be ordinally 526 

ascending in magnitude or intensity with relatively even-spaced differences in magnitude 527 

between categories wherever possible (i.e. for a factored feature with levels from 1,…,n, the 528 

level labeled “1” represented responses such as “Strongly Disagree”, “Never”, “None”, or 529 

the lowest frequency/intensity, and the level labeled “n” represented responses such as 530 

“Strongly Agree”, “Always”, or the greatest frequency/intensity). These features were 531 

merged with BMI, sex, age, and eGFR data available for this subcohort. 532 

 533 

Depression and Anxiety Health History Data 534 

We used logistic regression to scrutinize associations between 11 (anxiety) and 10 535 

(depression) independent binary (“true” or “false”) self-reported questions based on asking 536 

self-reported “self-current”, “self-past”, and “family” histories of depression or anxiety and 537 

BMF, with depression or anxiety encoded as a binary dependent variable, and BMF encoded 538 

as a categorical independent variable, and with the standard set of covariates (sex, age, BMI, 539 

and eGFR). 540 

 541 

Statistical Analyses 542 

For the blood proteomics, plasma chemistries, and metabolite associations, generalized 543 

linear regression models were run using the LIMMA package in R [79]. BMF was encoded as 544 

a categorical variable (or in the case of analyzing alpha-diversity, it was also computed as an 545 

ordinal variable with a linear model coefficient) with categories: 1 = constipation (1-2 bowel 546 

movements per week), 2 = low-normal (3-6 bowel movements per week), 3 = high-normal (1-547 

3 bowel movements per day), and 4 = diarrhea (4 or more  bowel movements per day). In 548 

each regression covariates BMI, sex, age, and eGFR were included, in addition to BMF, to the 549 

response variable. The response variables were either: centered log ratio-transformed taxa 550 
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data, log-transformed plasma metabolomics data, corrected plasma proteomics data, log-551 

transformed plasma chemistries data, or ordinal response variables from questionnaire data, 552 

depending on the analysis. For gut microbiome data, genus-level counts were modeled with 553 

a beta-binomial distribution using the CORNCOB package in R [80]. Finally, for the 554 

questionnaire data (ordinal response categories across diet, exercise, stress, pain, and other 555 

lifestyle factors), the depression questions data, and the anxiety questions data, polr in R 556 

was used for the ordinal regression analysis. 557 

 558 

Community Replication Rate (PTR) of Gut Microbiome 559 

FASTQ files from the metagenomic shotgun sequencing were first filtered and trimmed using 560 

FASTP. Here the first 5-bp of the 5’ end of the read were trimmed to remove partial adapter 561 

sequences and the 3’ end was trimmed using a sliding window that would trim the read as 562 

soon as the window average fell below a quality score of 20. Reads shorter than 50-bp after 563 

trimming or with more than 1 ambiguous base call were removed from further analysis. 564 

Filtered and trimmed reads were then passed to COPTR to estimate PTRs [81,82]. In brief, 565 

preprocessed reads were aligned to a database of 2,935 species representative genomes 566 

from the human gut contained in the IGG database version 1.0 using BOWTIE2. Coverage 567 

profiles were extracted from the generated alignments and log2-transformed PTRs were 568 

calculated by COPTR for each reference genome with at least 5,000 mapped reads.  For each 569 

sample an overall measure of bacterial replication was estimated as the mean of all log2 PTR 570 

estimates in the sample. The mean log2 PTR was then used in a regression model as the 571 

dependent variable and regressed against BMF categories correcting for sex, age, and BMI. 572 

Significant associations with overall BMF were obtained from an F-test comparing the full 573 

model with a nested model containing only the confounding variables. 574 

 575 
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Data Availability 576 

Code used to analyze 16S rRNA gene amplicon sequencing data can be found at 577 

https://github.com/gibbons-lab/mbtools while code used to run the statistical analysis 578 

described in this paper is available at https://github.com/jajohnso29/Generally-Healthy-579 

Cohort-BMF . 580 

Pipelines for the processing of the metagenomic shotgun sequencing data and 581 

estimation of PTRs can be found at https://github.com/gibbons-lab/pipelines. 582 

 Qualified researchers can access the full Arivale deidentified dataset, including all 583 

raw data, supporting the findings in this study for research purposes through signing a Data 584 

Use Agreement (DUA). Inquiries to access the data can be made at data-585 

access@isbscience.org and will be responded to within 7 business days. 586 
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 845 

Figure 1. Data collection strategy. Arivale participants had their multi-omics, survey, and846 

clinical data collected through various methods: interviewing, blood plasma collection, and847 

stool samples. Interview data consisted of several questions with categorical responses848 

either ordinal or binary (True/False) answers (which were excluded in this analysis), which849 

were then used in ordinal POLR to determine likelihoods of different response categories850 

across BMF and its covariates. Clinical labs, untargeted metabolomics, and proteomics data851 

were obtained from collected blood plasma samples (the earliest sample available per852 

participant in the cohort). Gut microbiome ASV data were collected from stool samples853 

provided using an at-home kit. BMF data were determined as categorical ranges of reported854 

bowel movements per week or day depending on the response to lifestyle questionnaire data855 

from the interviews. 856 
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857 

Figure 2. Distribution of BMF categories across sex and BMI groups and the relationship858 

between average community growth rate and BMF. (A-B): Significant unevenness in the859 

distribution of BMF across sex and BMI are highlighted here. POLR was used to regress BMF860 

against the covariates sex, age, BMI, and eGFR. The result was that only sex (P = 1.23E-23)861 

and BMI (P = 5.09E-6) were significantly associated with variations in BMF. (C): Community862 

Average PTR Per Individual (the mean growth rate across all growth rates of all taxa for a863 

given individual). There is a significant difference (linear regression, P value = 1.56E-2; post-864 

hoc t-test P value = 1.0E-2) between the higher and lower BMF “normal” categories865 

showing a general directional trend of increasing community average PTR with rising BMF866 

level, indicative of higher BMF representing a higher “flow rate” of material through the gut867 

which is associated with higher growth community growth rates. 868 
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869 
Figure 3. Associations between gut microbiome alpha-diversity measures and BMF. (A)870 

The numbers of taxonomic groups per BMF category, representing the richness of the BMF871 

cohort (ordinal BMF variable - ANOVA P value: 9.02E-4). (B) The number of different872 

taxonomic groups (variety) per BMF category, representing the alpha diversity of the BMF873 

cohort (ordinal BMF variable - ANOVA P value: 5.89E-3). (C) The distribution of abundances874 

of the taxonomic groups, determined proportionally by dividing the diversity by the richness875 

of the cohort (evenness, ordinal BMF variable - ANOVA P value: 1.81E-2). The evenness876 

decreases with BMF, suggesting slow colonic transit times (constipation) correspond to877 

having a higher ratio of richness to diversity and lower evenness. 878 
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879 
Figure 4. Significant BMF associations for the 10 most abundant genera, Akkermansia880 

and another 9 genera with the lowest remaining P values. The top 10 most abundant881 

significant taxa from the fecal samples and ASV CORNCOB analysis (A-J), Akkermansia (K)882 

and the top 9 most significant taxa not already included in the most abundant list (L-T)883 

Lines beneath each plot denote significant differences from the reference category, and884 

asterisks denote FDR-corrected significance threshold. (***): P < 0.0001, (**): 0.0001 < P <885 

0.01, (*): 0.01 < P < 0.05. 886 

 

, 

t 

, 

. 

d 

< 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2023. ; https://doi.org/10.1101/2023.03.04.531100doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.04.531100
http://creativecommons.org/licenses/by/4.0/


 

887 
Figure 5. Top 12 BMF-associated blood plasma metabolites with annotations. (A-L) The 12888 

significant blood plasma metabolites from the LIMMA metabolomics analysis with available889 

annotations. Lines beneath each plot denote significant differences from the reference890 

category, and asterisks denote FDR-corrected significance threshold. (***): P < 0.0001, (**)891 

0.0001 < P < 0.01, (*): 0.01 < P < 0.05. 892 
 893 
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Figure 6. Blood plasma chemistries significantly associated with BMF. The 4 blood plasma897 

chemistries features that showed significant associations with BMF. Lines beneath each plot898 

denote significant differences from the reference category, and asterisks denote FDR-899 

corrected significance threshold. (***): P < 0.0001, (**): 0.0001 < P < 0.01, (*): 0.01 < P <900 

0.05. 901 

 902 

 903 

Figure 7. Selected blood plasma proteins significantly associated with BMF. Top 10 most904 

significant blood plasma protein results with associated genes and annotated descriptions905 

from the LIMMA proteomics analysis (A-J). Lines beneath each plot denote significant906 

differences from the reference category, and asterisks denote FDR-corrected significance907 

threshold. (***): P < 0.0001, (**): 0.0001 < P < 0.01, (*): 0.01 < P < 0.05. 908 
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910 
Figure 8. Ordinal regression odds ratio for health, diet, and lifestyle survey data vs BMF911 

and covariates. Response variables are colored by category: questions related to diet912 

exercise, and lifestyle (Diet/Lifestyle), questions related to current digestive913 

symptoms/function, health/medication history, and appetite (Health/Digestion), and914 

questions related to the Big 5 Personality Test, mood/behavior or pain (Psychological). The915 

BMF reference category was “high-normal” BMF (7-21 bowel movements per week). Each916 

tick on the vertical axes represents a directional association in likelihood across the917 

horizontal axis. The center line over the plots at x = 1.0 represents an equal likelihood of918 

reporting an increase in number, intensity, frequency, or agreement (depending on the919 

response variable) between the left side of the arrow on the vertical axis tick and the right920 

side of the arrow on the vertical axis tick. A confidence interval that does not span the center921 

line is significantly associated with the independent variable on the vertical axis tick. (*)922 

FDR-corrected P-value < 0.05. 923 
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