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Relating spatial features across spatial biology platforms

Immunohistochemistry (IHC)
Immunofluorescence (IF)

multi-omics




Hematoxylin and eosin (H&E) staining and images

The most widely used stain in medical diagnosis
Hematoxylin stains cell nuclei blue

Eosin stains the extracellular matrix and cytoplasm pink
H&E shows the general layout and distribution of cells and
provides a general overview of a tissue sample structure
“Whole slide” gigapixel images, e.g 100,000 x 100,000 pixels
Stored in 3 (R,G,B) channels as tiled TIFF / SVS format



Machine Learning Prediction from H&E Images

e Immune cell regions from H&E images

e Cancer cell regions from H&E images, informed by IHC/IF
o P53 - HEMnet
o panCK - SHIFT

e |mmune cell regions from H&E, informed by IHC/IF
o (CD45




Immune cells from H&E, informed by pathologist
TIL Map: Tumor Infiltrating Lymphocyte Map, Computational staining

Extract,
Refine -
TILs

Correlate with Clinical
and Genomic Data

XX

13 Cancer Types
~5000 Participants

Predict lymphocytes from H&E

H&E stained sections from The Cancer
Genome Atlas (TCGA)

Predictions on tiles/patches: 100 x 100
pixel (50 x 50 micrometer )

Neural networks (VGG-16,ResNet-34
Inception-V4)

13 human cancers (2018)

23 human cancers (2022)

Cell Reports 2018 Apr 3;23(1):181-193. Joel Saltz et al.
Front. Oncol., 15 Feb. 2022 Volume 11 - 2021 ; Shahira Abousamra et al.



TIL Map - prediction

Whole-slide Tumor Infiltrating Lymphocyte (TIL) mapping




TIL Map - training

Whole Slide
Tissue Images
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TIL Map - predictions and structure

H&E TIL maps Spatial Clusters

Brisk diffuse

D3-A2JF y Brisk band-Like

TCGA
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Breast Cancer multifocal




TIL Map assessment and correlates
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Cancer cells from H&E, informed by IHC - HEMnet

HEMnet: H&E Molecular neural network

1. Label H&E images based on p53 stain

po~e - e Predict p53 (cancer) from H&E
4 ey e H&E and IHC of adjacent tissue sections
e Predictions on tiles: 224 x 224 pixel
. e Convolutional Neural Network (CNN)
2. Split H&E images into labelled tiles
i e Human colon cancer
3::%:“ R 1000 Neneameer | om Training Slides
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npj Precision Oncology (2022) 6:14 ; Andrew Su et al.



HEMnet - Assessing performance

HEMnet p53 Performance (ROC AUC)
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Cancer cells from H&E, informed by IF - SHIFT

SHIFT: speedy histological-to-immunofluorescent translation, a deep learning-based
method for virtual IF staining of images containing histologically-stained tissues.

Predict PanCK (cancer) from H&E
Human pancreatic cancer

H&E and IF of same section of tissue
Predictions on tiles: 256x256 pixel
Generative Adversarial Network (GAN)
Generator network G generates virtual IF
tiles conditioned on H&E tiles.

e The discriminator network D learns to
discriminate between real and generated
image pairs.

Tile spatially-registered
Training phase H&E and CK IF i
Use representative sample
subset for SHIFT training to

facilitate model generalizability

Real or generated tile pair? Real or generated tile pair?

Nature Scientific Reports (2020) 10:17507, Erik A. Burlingame et al.



Prediction, Testing, and Architecture - SHIFT

H&E Real panCK IF SHIFT

Conditional
GAN: G has extra U-Net
element to fool D —
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Immune cells from H&E, informed by IHC

e Train on CD45 (leukocytes)

e Prediction of tissue
categories on “superpixels”

e Human breast cancer

e H&E and IHC of adjacent
tissue sections

e Convolutional Neural
Network (CNN)

LR: Leukocyte-rich, EP: Epithelium,
SR: Stroma, AD: Adipose, and BG:
Background

J Pathol Inform Volume 7, Issue 1, January—December 2016, 38; Riku Turkki et al.



Very important things that we skipped completely

Antibody properties/quality
Multiplexed labeling and imaging
Image quality

Image normalization

Image registration and alignment
Selection of regions

Selection of tiles

Selection of training and test sets
Machine learning architectures
Scoring/evaluation methods
Other methods/publications
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15-minute Q&A - All Speakers from Session Two



