Workshop: Spatial Multi-Omics for Cancer Systems Biology

This pdf presentation contains screenshots instead of the originally presented videos. For interest in the video material please reach out to the speaker.

Visual Analytics for Imaging-Based Spatial Profiling

Robert Krueger, Ph.D.

Ceanet

Visual Computing Group @ Harvard School of **Engineering and Applied** Sciences

Data Historyay 1X Standard 02/12/2024

Ð

Laboratory of Systems Pharmacology @Harvard Medical School

Digital Pathology

Semi-Automated Workflows

Machine Learning

Expert-in-the-Loop

D. Keim, G. Andrienko, J.-D. Fekete, C. Görg, J. Kohlhammer, and G. Melançon. Visual analytics: Definition, process, and challenges. In A. Kerren, J. Stasko, J.-D. Fekete, and C. North, editors, *Information Visualization*, volume 4950 of *Lecture Notes in Computer Science*, pages 154–175. Springer Berlin Heidelberg, 2008.

D. Keim, G. Andrienko, J.-D. Fekete, C. Görg, J. Kohlhammer, and G. Melançon. Visual analytics: Definition, process, and challenges. In A. Kerren, J. Stasko, J.-D. Fekete, and C. North, editors, *Information Visualization*, volume 4950 of *Lecture Notes in Computer Science*, pages 154–175. Springer Berlin Heidelberg, 2008.

D. Keim, G. Andrienko, J.-D. Fekete, C. Görg, J. Kohlhammer, and G. Melançon. Visual analytics: Definition, process, and challenges. In A. Kerren, J. Stasko, J.-D. Fekete, and C. North, editors, *Information Visualization*, volume 4950 of *Lecture Notes in Computer Science*, pages 154–175. Springer Berlin Heidelberg, 2008.

D. Keim, G. Andrienko, J.-D. Fekete, C. Görg, J. Kohlhammer, and G. Melançon. Visual analytics: Definition, process, and challenges. In A. Kerren, J. Stasko, J.-D. Fekete, and C. North, editors, *Information Visualization*, volume 4950 of *Lecture Notes in Computer Science*, pages 154–175. Springer Berlin Heidelberg, 2008.

About Me

Assistant Professor of Computer Science @ New York University | Tandon School of Engineering

>> Research: Data Visualization and Visual Analytics

>> Application Field: Biomedical Data Analysis

>> Previously at Harvard – LSP / VCG

Visual Computing Group @ Harvard School of Engineering and Applied Sciences

Laboratory of Systems Pharmacology @Harvard Medical School

Multiplexed Tissue Imaging

- Making proteins visible (give cells their identity)
- Understand and target tumor microenvironment
- High throughput imaging methods
 e. g., CyCIF Cyclic Immunofluorescence Imaging

CyCIF - Cyclic Immunofluorescence Imaging

Lin, J.R., et al., 2018. Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes. *Elife*, 7.

Feature Extraction

Registration & Stitching

Imaging

n Channels

Image Segmentation

Dataset 60 image channels

Res: up to 60k x 60k px, 200nm per pixel

Size: often > 1TB > 1 million cells

Registration, Segmentation

Imaging

Registration & Stitching

Image Segmentation

Feature Extraction

Analysis

Feature Extraction

RKz,S100 raw,KI67 raw,CD4 raw,CD45RO raw,ECAD raw, 49939,36830.2096793416,2669.37260583922,4509.63817 340315216, 15886.0654513031, 805.431344349627, 5403.90 55311357,16111.967124389,2046.31992270876,4848.8938 1856530108296, 10369. 1039466938, 1805. 48090230138, 340 087585788315,8769.76105168401,1569.46276771884,368 061,21340.868534893,2166.69089921485,6925.767491384 01873328,6917.8901869189,2700.22946538811,6888.8410 75873,22099.2387282891,2312.13774841766,6891.931778 40662245453566576,5636.79829369939,1638.1548849530 26,17430.6941730937,2464.51937937619,4403.400016499 9,17705.3012294562,3344.80671030298,30632.069949492 095.751919983,3042.76525250203,12950.238059988,261 8303.35958645746,2778.39769427491,12494.1966956507

Each cell (row) with its channel values (columns)

Feature Extraction

other spatial omics

Feature Extraction

RKz,S100 raw,KI67 raw,CD4 raw,CD45R0 raw,ECAD raw,G 49939,36830.2096793416,2669.37260583922,4509.63817 340315216, 15886, 0654513031, 805, 431344349627, 5403, 96 55311357,16111.967124389,2046.31992270876,4848.8938 1856530108296,10369.1039466938,1805.48090230138,340 087585788315,8769.76105168401,1569.46276771884,368 061,21340.868534893,2166.69089921485,6925.767491384 01873328,6917.8901869189,2700.22946538811,6888.8410 75873,22099.2387282891,2312.13774841766,6891.931778 40662245453566576,5636.79829369939,1638.1548849530 26,17430.6941730937,2464.51937937619,4403.400016499 9,17705.3012294562,3344.80671030298,30632.069949492 095.751919983,3042.76525250203,12950.238059988,261 8303.35958645746,2778.39769427491,12494.1966956507

Each cell (row) with its channel values (columns)

other spatial omics

Analysis

How to achieve flexible and scalable image rendering in the web?

Scalable Multiplex Image Rendering for the Web

• Big data: up to 1TB image

OME-TIFF

tile

zooming

OME-NGFF

Moore, J. et al. OME-NGFF: a next-generation file format for expanding bioimaging data-access strategies. *Nature methods.*

panning

Scalable Multiplex Image Rendering for the Web

Visual Analytics Tasks

Visual Analysis of Multiplexed Immunofluorescence Data

Annotat

Interaction Analysis Cellular Neighborhoods

Cell Classification Data Facetting with Machine Learning

ion ext Pathology Assessment

Facet Data into Cell Types

Identify cell types based on protein expressions in image channels

Facetto

Hierarchical Faceting

Image Exploration

Feature Exploration

-				
DNA2	DNA3	DNA4	DNAS	DNA6
31265.41	23732.17	19139.00	25271.65	18142.34
47630.80	40050,56	33954.34	38/320,10	302 19.34
47837.10	36858.16	29951.55	37885.62	27985.73
60703.61	59195.34	57942.78	59033.49	56295.39
57314.87	46539.72	38905.62	43942.19	34160.64
56985.62	45343.78	33035.63	48175.78	30458.63
64374.63	57969.92	48820.70	54957.74	44675.97
63454.06	57538.09	45300.06	60267.35	41641.96

Krueger, R., et al., 2019. Facetto: Combining unsupervised and supervised learning for hierarchical phenotype analysis in multi-channel image data. IEEE TVCG

Manual Faceting

 Facet data into meaningful subsets (cell types, regions)

 Keep track of consecutive filtering actions

How can ML Support Analysis & Faceting?

- Bottom-Up Analysis
 - Unsupervised learning supports exploration and faceting
 - EM-Clustering

 is fast, detects clusters of
 different size, density, shape

How can ML Support Analysis & Faceting?

Top-Down Analysis

- Supervised learning applies gained knowledge to new data
- Train classifier on manually refined clustering results
- **CNN** Classification \bullet uses image tiles as input to classify cell phenotypes

ų.	KERATIN	KI67	MITF	NGFR	PD1	PDL1	5100	SMA	VEGFR2	VIMENTIN	ctu
49	1123.71	3393.18	5308.15	1522.03	2539.08	1828.88	6809.87	3515.88	8008.68	5187.92	8609
29	1088.55	3362.18	5019.65	1542.80	2662.50	1724.68	3209.15	3435.16	7403.13	5796.89	9218
48	1247.14	3945.69	5442.07	1543.38	3693.60	1946.69	668.86	2127.57	4700.29	3301.95	8391
45	1367.16	4005.51	5812.58	1571.55	2492.08	1800.26	15623.00	2755.47	13661.48	6459.65	9214
78	1309.55	5756.54	5896.81	1600.85	2752.28	1785.98	7472.89	309.87	4728.18	2365.04	6736
18	1157.06	4388.13	5159.85	1583.25	3267.75	2071.38	9974.03	5033.45	5350.97	4047.50	8706
63	1153.61	3805.31	5202.76	1577.47	2786.31	1927.24	9598.37	6991.22	4700.92	2050.29	6490
09	1446.36	4195.55	6626.27	1589.18	2133.00	1810.36	6967.73	1851.45	6243.00	2416.55	3551
32	1625.61	4804.58	7205.03	1621.97	1981.45	1783.13	19305.71	1652.26	5595.13	2042.10	8555
49	1245.92	3917.19	5595.22	1639.30	2603.71	1850.64	0660.31	7949.85	10281.03	4288.21	7304
67	1165.40	3705.21	5204.00	1602.05	4133.63	2408.23	7777.95	1030.26	7218.98	3171,26	7771

Visual Analysis of Multiplexed Immunofluorescence Data

Annotat Focus+Conte

Cell Classification

Data Facetting with Machine Learning

Interaction Analysis Cellular Neighborhoods

ion ext Pathology Assessment

From Single-Cell Analysis to Cellular Neighborhoods

Neighborhood Quantification

Visinity: Visual Spatial Neighborhood Analysis

Warchol, S., Krueger, R. et al., 2022.

Visinity: Visual Spatial Neighborhood Analysis for Multiplexed Tissue Imaging Data. IEEE TVCG.

Gaglia, Giorgio, et al., 2023. Lymphocyte networks are dynamic cellular communities in the immunoregulatory landscape of lung adenocarcinoma. Cancer Cell.

Similarity Search	Selection: Cluster Threshold: 0.83	-	. Q
Cluster Neighborho	10 Dods		•
^ Neighborho	ood Patterns		
Name			100
Germinal Cente	er	ø	
Custom Cluster	r 0 / 10	ø	Ē
Custom Cluster	r 1 / 10	1	Ē
Custom Cluster	r 2 / 10	1	•
Custom Cluster	r 🙀 / 10		
Custom Cluster	r 4 / 10	1	Î
Custom Cluster	r 5 / 10	1	
Custom Cluster	r 6 / 10	1	Ĩ
Custom Cluster	r 7 / 10	1	Î
Custom Cluster	r 8 / 10	1	
Custom Cluster	r 9 / 10	1	

(Max) Selecter

	onanneis		
	DNA1		
	•	32,499	
1	AF488		
	AF555		
	AF647		
	DNA2		
	BG488		
	BG555		
	BG647		
	DNA3		
	CD2		
	NONE		
	CD10		
	DNA4		
	CD30		
	ALK		

∧ Cha

B-cells mature

Reorder Overall

Blood Vessel

CD4 T cells

Unknow

B cell: Blood Vessel: CD163+ Macrophage: CD4 T cell: CD68+ Macrophage: CD8 T cell: Follicular Dendritic cell:

> Myeloid Lineage NK cells Other Immune cells Regulatory T cells T cells

> > Unkno

CD68+ Macropha Regulatory T c

Neighborhood Composition

Selection Avg. 1% 40% 60%

Pairwise Correlation

Similarity	Selection: Cluster			
Search	Threshold: 0.83 💳		>	C
Cluster Neighborho	10 oods			•
^ Neighborho	od Patterns			
Name				
Germinal Cente	r	ø	Ē	
Custom Cluster 0 / 10			Ē	
Custom Cluster	1/10	ø	Ĩ	
Custom Cluster	2/10	1	Ũ	
Custom Cluster	3/10	ø	Ē	
Custom Cluster	4 / 10	ø	T	
Custom Cluster	5/10	1		
Custom Cluster	6/10	ø		
Custom Cluster	7 / 10	1		
Custom Cluster	8/10	1	Ē	
Custom Cluster	9 / 10	ø		

4 (Max) Sele

onaimeio	
DNA1	
0	32,499
AF488	
AF555	
AF647	
DNA2	
BG488	
BG555	
BG647	
DNA3	
CD2	
NONE	
CD10	
DNA4	
CD30	
ALK	

∧ Cha

Reorder Overall

Blood Vesse

Regulatory T cells

CD4 T cells

CD8 T cell

CD163+ Macrophage CD4 T cel CD68+ Macrophage

> CD8 T cell Dendritic cell

> > Unkn

Myeloid Lineage NK cell: Other Immune cell: Regulatory T cell:

Neighborhood Embedding

Pairwise Correlation

Visinity Data Sources - Upload

T-cell – B-cell margin

Neighborhood Composition

Selection Avg. 20% 40%

Pairwise Correlation

DNA7

Epithelium - Mixture of epithelial and blood cells

Overall NK cell Follicular Dendritic ce CD68+ Ma **Regulatory T cell** B cel Unkno CD163+ Ma

> B cells Blood Vessels CD163+ Macrophages CD4 T cells CD68+ Macrophages CD8 T cells Follicular Dendritic cells Myeloid Lineage NK cell Other Immune cells Regulatory T cells T cells Unknow

Top-Down: Hypothesis Formulation & Query

Top-Down: Search/Find by Example

Visual Analysis of Multiplexed Immunofluorescence Data

Annotation

Focus+Context Pathology Assessment

From Scope 2 Screen

Immune Region Close

Jessup, J.& Krueger, R., et al., 2021. Scope2Screen: Focus+Context Techniques for Pathology Tumor Assessment in Multivariate Image Data. IEEE TVCG.

Filters

Feature-based

Image-based

Image-Based Filters

Annotation

Appendicted intersection - uppen

Analysis Suite: 3 Tools

Gater: Tabular Data Cleaning with Visual Feedback

https://github.com/labsyspharm/gater

Visinity (Facetto): Cell Typing and Neighborhood Analysis

https://github.com/labsyspharm/visinity

Visual Computing Group @ Harvard School of Engineering and Applied Sciences

Exploration and Annotation

https://github.com/labsyspharm/scope2screen

Scope2Screen: Focus+Context ROI

Laboratory of Systems Pharmacology @Harvard Medical School

Future Research Areas

2D to 3D

- TB-sized multi-volumetric data
- Scalable multi-resolution rendering
- Image-based cell and interaction analysis

Herzberger, Lukas et al. 2023. Residency Octree: A Hybrid Approach for Scalable Web-Based Multi-Volume Rendering. IEEE TVCG.

Future Research Areas

• 2D to 3D

- TB-sized multi-volumetric data
- Scalable multi-resolution rendering
- Image-based cell and interaction analysis

• Holistic Orchestration and Analysis

- Multiple modalities
- Spatially referenced gene expressions
- Textual data (annotations, meta data)

Spatial Analysis in Other Domains

Nirmal et al. The Spatial Landscape of Progression and Immunoediting in Primary Melanoma at Single-Cell Resolution, Cancer Discovery, 2022.

Biomedical Spatial Information Systems

Geographical Information Systems

Administr. Streets Parcels Land Use Elevation

Graphics from https://www.newbergoregon.go v/engineering/page/aboutnewberg-gis

Thank You!

1

Questions?

rk4815@nyu.edu

This work is supported by the Ludwig Center at Harvard Medical School, and by NIH/NCI grants NCI U2C-CA233262, NCI U2C-CA233280 and NCI U54-CA225088.

Visual Computing Group @School of Engineering and Applied Sciences

Laboratory of Systems Pharmacology, @Harvard Medical School

The second s

