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Spatial Omics Technology Family
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The Rise of NGS-Based High-Throughput
Spatial Omics Mapping
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Barcoded Solid-Phase RNA Capture for Spatial
Transcriptomics Profiling

TRANSCRIPTION SCience

Visualization and analysis of gene
expression in tissue sections by
spatial transcriptomics

Patrik L. Stahl,">* Fredrik Salmén,>* Sanja Vickovic,>+ Anna Lundmark,>?t

José Fernandez Navarro,"> Jens Magnusson,' Stefania Giacomello,” Michaela Asp,”
Jakub O. Westholm,* Mikael Huss,* Annelie Mollbrink,? Sten Linnarsson,”

Simone Codeluppi,”® Ake Borg,” Fredrik Pontén,® Paul Igor Costea,? Pelin Sahlén,?
Jan Mulder,® Olaf Bergmann,! Joakim Lundeberg,?t Jonas Frisén'

Analysis of the pattern of proteins or messenger RNAs (mRNAs) in histological tissue sections
is a cornerstone in biomedical research and diagnostics. This typically involves the visualization
of a few proteins or expressed genes at a time. We have devised a strategy, which we call “spatial
transcriptomics,” that allows visualization and quantitative analysis of the transcriptome with
spatial resolution in individual tissue sections. By positioning histological sections on arrayed
reverse transcription primers with unique positional barcodes, we demonstrate high-quality
RNA-sequencing data with maintained two-dimensional positional information from the mouse
brain and human breast cancer. Spatial transcriptomics provides quantitative gene expression data
and visualization of the distribution of mRNAs within tissue sections and enables novel types of
bioinformatics analyses, valuable in research and diagnostics.

PROTOCOL

nature
pr OtOCOIS https://doi.org/10.1038/541596-018-0045-2

Barcoded solid-phase RNA capture for Spatial
Transcriptomics profiling in mammalian tissue
sections

Fredrik Salmén"?®, Patrik L. Stahl">*, Annelie Mollbrink, José Fernandez Navarro',
Sanja Vickovic"?, Jonas Frisén®, Joakim Lundeberg“

Spatial resolution of gene expression enables gene expression events to be pinpointed to a specific I ion in biological
tissue. Spatially resolved gene expression in tissue sections is traditionally analyzed using i histochemistry (IHC)
or in situ hybridization (ISH). These technologies are invaluable tools for pathologists and molecular biologists; h 5
their throughput is limited to the analysis of only a few genes at a time. Recent advances in RNA sequencing (RNA-seq)
have made it ible to obtain unbiased high-throughput gene exp ion data in bulk. Spatial Transcriptomics combines
the benefits of traditional spatially Ived technologies with the i h h of RNA-seq. Here, we present a
protocol describing how to apply the Spatial Transcriptomi hnology to lian tissue. This protocol combines
histological ing and spatiall, lved RNA-seq data from intact tissue i Once suitable tissue-specific
conditions have been established, library construction and seq ing can be pleted in ~5-6 d. Data processing takes
a few hours, with the exact timing d dent on the ing depth. Our method requires no special instruments and

can be performed in any laboratory with access to a cryostat, microscope and next-generation sequencing.
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Slide-seq and Curio Bio
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Slide-seq: A scalable technology
for measuring genome-wide
expression at high spatial resolution

Samuel G. Rodriques”*?*, Robert R. Stickels>***  Aleksandrina Goeva®,
Carly A. Martin®, Evan Murray®, Charles R. Vanderburg?®, Joshua Welch?,
Linlin M. Chen?®, Fei Chen®t1, Evan Z. Macosko®®11

Spatial positions of cells in tissues strongly influence function, yet a high-throughput,
genome-wide readout of gene expression with cellular resolution is lacking. We developed
Slide-seq, a method for transferring RNA from tissue sections onto a surface covered in
DNA-barcoded beads with known positions, allowing the locations of the RNA to be
inferred by sequencing. Using Slide-seq, we localized cell types identified by single-cell
RNA sequencing datasets within the cerebellum and hippocampus, characterized spatial
gene expression patterns in the Purkinje layer of mouse cerebellum, and defined the
temporal evolution of cell type—specific responses in a mouse model of traumatic brain
injury. These studies highlight how Slide-seq provides a scalable method for obtaining
spatially resolved gene expression data at resolutions comparable to the sizes of
individual cells.
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Spatial Transcriptome Sequencing at Subcellar Resolution
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Microscopic examination
of spatial transcriptome using Seg-Scope
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Spatiotemporal transcriptomic atlas of mouse
organogenesis using DNA nanoball-pattemed arrays
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Polony gels enable ampilifiable DNA stamping
and spatial transcriptomics of chronic pain
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10X Genomics Visium, Visium

Visium Spatial Gene Expression

Map the whole
transcriptome within

the tissue context

Visium Spatial Gene Expression is a next-generation molecular profiling
solution for classifying tissue based on total mMRNA. Map the whole
transcriptome with morphological context in FFPE or fresh frozen tissues to
discover novel insights into normal development, disease pathology, and clinical
translational research.

Access more sample types

Compatible with both FFPE
and fresh frozen tissue

samples.

Diverse sample compatibility Y A Y
AP A

Demonstrated data on a Y A Y

diverse set of organs across
species (human, mouse, rat,
and more).

The Capture Area is a
continuous lawn of oligos

Visium FFPE
Visium HD

A probe set for
~18,000 genes

8 x 8 um bin

Whole tissue section profiling

No need to select regions of
interest—analyze the whole

transcriptome from an entire
section.

Protein co-detection

Combine whole transcriptome
spatial analysis with
immunofluorescence protein
detection.
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High cellular resolution

1-10 cell resolution on average
per spot depending on tissue
type.

Streamlined data analysis

Combine histological and gene
expression data with easy-to-
use software.
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Deterministic Barcoding in Tissue for Spatial Multi-Omics

Cell

High-Spatial-Resolution Multi-Omics Sequencing via
Deterministic Barcoding in Tissue
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Liu, Y. et al., bioRxiv 788992 (2019).

Authors
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In Brief

DBiT-seq is a microfluidic-based method
to deliver barcodes to the surface of a
tissue slide to allow for spatial omics
sequencing with 10-um pixel size.

Liu, Y. et al., Cell, 10;183(6):1665-1681 (2020).
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Other INn-Tissue

Science
SPATIAL GENETICS
Embryo-scale, single-cell spatial transcriptomics

Sanjay R. Srivatsan't, Mary C. Regier>>t, Eliza Barkan™*, Jennifer M. Franks’, Jonathan S. Packer®,
Parker Grosjean?, Madeleine Duran’, Sarah Saxton?, Jon J Ladd®, Malte Spielmann’2, Carlos Lois®,
Paul D. Lampe®, Jay Shendure™'®2% Kelly R. Stevens®>'23* Cole Trapnell*'%12*

Spatial patterns of gene expression manifest at scales ranging from local (e.g., cell-cell interactions)
to global (e.g., body axis patterning). However, current spatial transcriptomics methods either
average local contexts or are restricted to limited fields of view. Here, we introduce sci-Space,
which retains single-cell resolution while resolving spatial heterogeneity at larger scales. Applying
sci-Space to developing mouse embryos, we captured approximate spatial coordinates and

whole transcriptomes of about 120,000 nuclei. We identify thousands of genes exhibiting
anatomically patterned expression, leverage spatial information to annotate cellular subtypes,
show that cell types vary substantially in their extent of spatial patterning, and reveal correlations
between pseudotime and the migratory patterns of differentiating neurons. Looking forward,

we anticipate that sci-Space will facilitate the construction of spatially resolved single-cell atlases
of mammalian development.
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Spatial genomics enables multi-modal study
of clonal heterogeneity in tissues
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Slide-tags enables single-nucleus barcoding
formultimodal spatial genomics
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Deterministic Barcoding in Tissue for Spatial Multi-Omics
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High-Spatial-Resolution Multi-Omics Sequencing via
Deterministic Barcoding in Tissue
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In Brief

DBiT-seq is a microfluidic-based method
to deliver barcodes to the surface of a
tissue slide to allow for spatial omics
sequencing with 10-um pixel size.

Liu, Y. et al., Cell, 10;183(6):1665-1681 (2020).
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research highlights

Multiomics sequencing goes spatial

Microfluidic channels provide a means to deliver barcodes encoding spatial information to a tissue, which allows
co-profiling of gene expression and proteins of interest in a spatially resolved manner.

he plethora of sequencing tools
have broadened our understanding
of how cells function and develop.
Yet the majority of sequencing tools leave
out the spatial context where cells reside.
Such spatial context can be essential to
understanding how cells organize within a
three-dimensional environment and how
cells interact with each other.

Back in 2013, Rong Fan from Yale
University was intrigued by a conversation
with colleague Kathryn Miller-Jensen: they
noticed that trypsinizing cancer cells off the
substrate could perturb the measurements
of the signaling network. Since then, Fan
has been thinking about how to fix and
measure cellular states on a substrate or in
a tissue without cell dissociation. Barcoding
strategies were introduced in massively
parallel single-cell RNA sequencing and
have substantially advanced the single-cell
field. Yet, Fan says, “I was never satisfied
with the random barcoding approach” He
hoped to have a method for ‘deterministic
barcoding’ of a tissue — delivering barcodes
to a given cell in a specific location.

In a sense, the advent of spatially
resolved transcriptomics, our Method
of the Year 2020, solved Fan’s problem.
Sequencing-based Visium from 10x
Genomics, Slide-seq, and high-definition
spatial transcriptomics (HDST), among

< Add antibody-
derived DNA
& tags

1st PDMS, RT

Tissue slide

2nd PDMS, ligation —

Microscope
Build NGS library

Re

Collect cDNA, PCR,
and prepare library

Schematic workflow of DBiT-seq. PDMS, polydimethylsiloxane microfluidic chip; RT, reverse
transcription; NGS, next-generation sequencing. Reproduced with permission from Liu et al. Cell 183,

1665-1681.e18, (2020), Elsevier.

to poly(A)-tailed mRNAs; this step is
followed by in situ reverse transcription.
The strip-like confinement, however, only
provides one-dimensional information. To
achieve a two-dimensional array of pixels,
Fan and his colleagues applied a crosstflow
scheme, in which they removed the first
microfluidic chip and clamped on a second
chip to deliver a separate set of DNA
barcodes in the perpendicular direction.
The two sets of barcodes are joined via

the ligation linker and store the spatial
information of the respective mRNA. After
two rounds of microfluidic flow, the tissue
retains its morphology and allows optical or
fluorescence imaging to associate individual
pixels with gene expression patterns.

gene expression patterns. Furthermore,

the integration of DBiT-seq and single-cell
transcriptomics data allowed the annotation
of cell types and the visualization of

cell distributions.

In addition to mouse embryos, Fan notes,
“As of today, we have performed DBiT-seq
on not only mouse embryos but also adult
heart, vessel, tonsil, lymph node, kidney;,
pancreas and skin.” Moreover, DBiT-seq is
compatible with immunostained tissue slides
and allows the study of transcriptome and
protein expression and of cell morphology.
Fan says, “We are thinking about how to
better integrate tissue histology images
and machine learning to deconvolve single
cell-transcriptomes in DBiT-seq pixels.”



Spatially Resolved Joint Proteome-
Transcriptome Profiling
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Beyond Spatial Transcriptomics
and a Panel of Proteins
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Spatial profiling of chromatin accessibility
inmouse and humantissues

https://doi.org/10.1038/s41586-022-05094-1
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Cellular functionin tissue is dependent on the local environment, requiring new
methods for spatial mapping of biomolecules and cells in the tissue context'.

The emergence of spatial transcriptomics has enabled genome-scale gene expression
mapping?”, but the ability to capture spatial epigenetic information of tissue at the
cellular level and genome scaleis lacking. Here we describe a method for spatially
resolved chromatin accessibility profiling of tissue sections using next-generation
sequencing (spatial-ATAC-seq) by combininginsitu Tn5 transposition chemistry® and
microfluidic deterministic barcoding’. Profiling mouse embryos using spatial-ATAC-
seq delineated tissue-region-specific epigenetic landscapes and identified gene
regulators involved in the development of the central nervous system. Mapping the
accessible genome in the mouse and humanbrain revealed the intricate arealization
of brainregions. Applying spatial-ATAC-seq to tonsil tissue resolved the spatially
distinct organization of immune cell types and states in lymphoid follicles and
extrafollicular zones. This technology progresses spatial biology by enabling spatially
resolved chromatin accessibility profiling to improve our understanding of cell
identity, cell state and cell fate decision in relation to epigenetic underpinnings in
developmentand disease.

Dr. Yanxiang Deng (Upenn)

Yanxiang Deng, et al, Nature 609, 375-383 (2022)
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Spatial-CUT&Tag: Spatially resolved chromatin ‘ &
modification profiling at the cellular level ~

Yanxiang Deng'?, Marek Bartosovic®, Petra Kukanja®, Di Zhang!, Yang Liu*2, Graham Su'?,
Archibald Enninful?, Zhiliang Bai', Goncalo Castelo-Branco®*, Rong Fan?°*

Spatial omics emerged as a new frontier of biological and biomedical research. Here, we present
spatial-CUT&Tag for spatially resolved genome-wide profiling of histone modifications by combining in
situ CUT&Tag chemistry, microfluidic deterministic barcoding, and next-generation sequencing. Spatially
resolved chromatin states in mouse embryos revealed tissue-type-specific epigenetic regulations in
concordance with ENCODE references and provide spatial information at tissue scale. Spatial-CUT&Tag
revealed epigenetic control of the cortical layer development and spatial patterning of cell types
determined by histone modification in mouse brain. Single-cell epigenomes can be derived in situ by
identifying 20-micrometer pixels containing only one nucleus using immunofluorescence imaging. Spatial
chromatin modification profiling in tissue may offer new opportunities to study epigenetic regulation,
cell function, and fate decision in normal physiology and pathogenesis.
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‘ Deng et al., Science 375, 681-686 (2022) 11 February 2022
: Dr. Yanxiang Deng (Upenn)
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Spatial epigenome-transcriptome
co-profiling of mammalian tissues
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Emerging spatial technologies, including spatial transcriptomics and spatial
epigenomics, are becoming powerful tools for profiling of cellular states in the tissue
context' *. However, current methods capture only one layer of omics information ata
time, precluding the possibility of examining the mechanistic relationship across the
central dogma of molecular biology. Here, we present two technologies for spatially
resolved, genome-wide, joint profiling of the epigenome and transcriptome by
cosequencing chromatin accessibility and gene expression, or histone modifications
(H3K27me3, H3K27ac or H3K4me3) and gene expression on the same tissue section at
near-single-cell resolution. These were applied to embryonic and juvenile mouse brain,
aswellas adult human brain, to map how epigenetic mechanisms control transcriptional
phenotype and cell dynamicsin tissue. Although highly concordant tissue features were
identified by either spatial epigenome or spatial transcriptome we also observed distinct
patterns, suggesting their differential roles in defining cell states. Linking epigenome to
transcriptome pixel by pixel allows the uncovering of new insights in spatial epigenetic
priming, differentiation and gene regulation within the tissue architecture. These
technologies are of greatinterestin life science and biomedical research.
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Spatial-ATAC-RNA-Co-Profiling of Embryonic Mouse Brain

Spatial-ATAC-RNA-seq (ATAC and RNA)
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Spatially Resolved Pseudo Time Analysis of Both Epigenetic
and Transcriptional State from Radial Glia to PPN
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Hope you will join the hands-on computational data
analysis session later today

Session Four: Practical Methods in Spatial Omics

13:15 Chair: Rong Fan, PhD Webinar Coming
- Rong Fan and members of his group from Yale University (Shuozhen Bao, Alev Baysoy, Zhiliang Bai) lead a via Soon
15:00 practical tutorial with Jupyter notebooks and GitHub software, to teach ‘hands-on’ experimental methods and Zoom

computational tools for spatial omics and data analysis

Image Courtesy Rong Fan



Spatially Exploring RNA Biology in FFPE Tissue
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Patho-DBiT-seq: clinical pathology FFPE tissue spatial RNA biology profiling

Highly sensitive spatial transcriptomic sequencing of formalin-fixed paraffin-embedded tissue
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Spatial Profiling of Alternative Splicing in FFPE Tissue

Alternative Splicing Events
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Read coverage

Read coverage

Spatial Profiling of Alternative Splicing in FFPE Tissue
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Spatially Resolved Unbiased microRNA and mRNA Co-Profiling of
Clinical FFPE Tissue ldentified the Potential Regulation of NF-kB
Signaling by miR-155 in Human Lymphoma
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» Lymphoma B cells have a 10- to 30-fold higher miR-155 copy number than do normal B cells.
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miR-155 is an NF-kB trans-
activational target
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Spatial “TMB” Profiling

marginal zone lymphoma of mucosa associated lymphoid tissue
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